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Fractional Fokker-Planck equation, solution, and application

E. Barkai
Department of Chemistry and Center for Materials Science and Engineering, Massachusetts Institute of Technology,

77 Massachusetts Avenue, Cambridge, Massachusetts 02139
~Received 13 April 2000; revised manuscript received 21 August 2000; published 29 March 2001!

Recently, Metzleret al. @Phys. Rev. Lett.82, 3563~1999!#, introduced a fractional Fokker-Planck equation
~FFPE! describing a subdiffusive behavior of a particle under the combined influence of external nonlinear
force field, and a Boltzmann thermal heat bath. In this paper we present the solution of the FFPE in terms of
an integral transformation. The transformation maps the solution of ordinary Fokker-Planck equation onto the
solution of the FFPE, and is based on Le´vy’s generalized central limit theorem. The meaning of the transfor-
mation is explained based on the known asymptotic solution of the continuous time random walk~CTRW!. We
investigate in detail~i! a force-free particle,~ii ! a particle in a uniform field, and~iii ! a particle in a harmonic
field. We also find an exact solution of the CTRW, and compare the CTRW result with the corresponding
solution of the FFPE. The relation between the fractional first passage time problem in an external nonlinear
field and the corresponding integer first passage time is given. An example of the one-dimensional fractional
first passage time in an external linear field is investigated in detail. The FFPE is shown to be compatible with
the Scher-Montroll approach for dispersive transport, and thus is applicable in a large variety of disordered
systems. The simple FFPE approach can be used as a practical tool for a phenomenological description of
certain types of complicated transport phenomena.

DOI: 10.1103/PhysRevE.63.046118 PACS number~s!: 02.50.2r, 05.40.Fb, 05.30.Pr, 05.45.Df
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I. INTRODUCTION

Fractional kinetic equations were introduced to descr
anomalous types of relaxation and diffusion processes:
example, relaxation processes in viscoelastic media@1,2#,
protein dynamics@3#, and diffusion processes found in ch
otic Hamiltonian systems@4#. Schneider and Wyss@5# intro-
duced a fractional diffusion equation describing a subdif
sive process investigated in Ref.@6#, where^r 2&;ta and 0
,a,1. The fractional diffusion equation describes t
asymptotic behavior of the continuous time random w
@6–9#, which in turn is known to describe different types
anomalous transport@10,11#. Recently, a fractional Fokker
Planck equation~FFPE! describing such an anomalous su
diffusive behavior in an external nonlinear fieldF(x), and
close to thermal equilibrium, was investigated@12#, and
whenF(x)50 the equation coincides with the fractional d
fusion equation. In Refs.@13,14# the FFPE was derived from
a generalized continuous time random walk~CTRW!, which
includes space dependent jump probabilities which are
result of an external fieldF(x).

The main purpose of this paper is to present a sim
method of solving the FFPE. The solution is based on
integral transformation which maps a Gaussian type of
fusion onto fractional diffusion. The transformation was i
vestigated by Bouchaud and Georges@15# and Klafter and
Zumofen @16# in the context of the CTRW. While Saiche
and Zaslavsky~Ref. @17# and later Ref.@18#! considered the
transformation in the context of fractional kinetic equation
here we generalize these results for the kinetics describe
the FFPE in Ref.@12#.

The integral transformation we investigate maps a so
tion of the ordinary Fokker-Planck equationP1(x,t), onto
the corresponding solution of the FFPEPa(x,t), according
to
1063-651X/2001/63~4!/046118~17!/$20.00 63 0461
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Pa~x,t !5E
0

`

n~s,t !P1~x,s!ds, ~1!

where 0,a,1, and

n~s,t !5
d

dsF12LaS t

s1/aD G ~2!

denotes theinverseone sided Le´vy stable density@i.e.,La(x)
is the one sided Le´vy stable distribution@19,20##. In Eq. ~1!,
the probability density function~PDF! Pa(x,t) has the same
initial and boundary conditions as the correspond
P1(x,t). We call Eq. ~1! an inverse Le´vy transform. For
example consider the force free case with free boundary c
ditions and initial conditions concentrated on the origin. T
solution of the FFPEPa(x,t) is found by transforming
P1(x,s), and the transformed function is the well know
Gaussian solution of the integer diffusion equation. Transf
mations similar to Eq.~1! hold for dimensions higher than 1
In what follows, we suppress the subscripta in Pa(x,t).

In Sec. II we give definitions, and briefly recall other fra
tional approaches related to the FFPE under investigation
solution of the problem is discussed in Sec. III. Section
explains the meaning of the transformation based on
CTRW.

We then discuss an application. Scher and Montroll~SM!
@21# modeled transport in a disordered medium based on
CTRW. Using SM predictions, one can explain and fit
large number of experimental results. For example, rec
experiments in organic photorefractive glasses@22#, nano-
crystalline TiO2 electrodes@23#, and conjugated polyme
system poly p-phenylene @24# indicate that the Scher
Montroll results are truly universal. Can one use the FFPE
model the SM type of transport? Since transport proces
©2001 The American Physical Society18-1
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~e.g., time of flight measurements! are sensitive to boundar
conditions, it is not obvious that the FFPE and CTRW p
dict the same result. Generally a CTRW with boundary c
ditions cannot be assumed to be equivalent to the co
sponding FFPE@13#. Here we show that the FFPE
compatible with the SM predictions. The FFPE approach
straightforward approach which simplifies the much mo
complex CTRW. Methods of solutions of standard Fokk
Planck equation can be used to solve the FFPE, and in s
cases analytical results can be found@12#. These simplifica-
tions are the main reason why a stochastic fractional
proach was introduced.

II. FRACTIONAL FOKKER-PLANCK EQUATION

Let P(x,t)>0 be a normalized probability density,

E
2`

`

P~x,t !dx51, ~3!

to find a particle onx at time t. A Gaussian Markovian type
of diffusion, in an external fieldF(x), and close to therma
equilibrium, was modeled many times based on the lin
Smolochowski Fokker-Planck~FP! equation@25,26#

]P~x,t !

]t
5K1L̃FPP~x,t !, ~4!

with the operator

L̃FP52
]

]x

F~x!

T
1

]2

]x2 , ~5!

whereK1 andT are the diffusion coefficient and temperatur
respectively. We consider a generalization of Eq.~4! based
on fractional Riemann-Liouville integration. Let us rewrite
Eq. ~4! in an integral form,

P~x,t !2d~x2x0!5K1 0Dt
21L̃FPP1~x,t !, ~6!

whered(x2x0) is the initial condition, and we shall assum
free boundary conditions. Replacing the integer integral
erator 0Dt

21 in Eq. ~6! with a fractional Riemann-Liouville
integral operator@27,28#

0Dt
2aZ~ t ![

1

G~a!
E

0

t Z~ t8!

~ t2t8!12a
dt8. ~7!

We find

Pa~x,t !2d~x2x0!5Ka 0Dt
2aL̃FPPa~x,t !, ~8!

whereKa is a generalized diffusion coefficient. An ordina
time differentiation of the fractional integral@Eq. ~8!# yields
the FFPE@12#:

]P~x,t !

]t
5Ka 0Dt

12aL̃FPP~x,t !. ~9!
04611
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It is easy to show thatP(x,t) in Eq. ~9! is normalized; in
Sec. III we show that the solution is also non-negative.
mentioned in Sec. I, the FFPE~9! was derived from a gen
eralized CTRW in Ref.@13#. When F(x)50, the equation
coincides with the Schneider-Wyss fractional diffusion equ
tion @5#. Later we shall use the Laplace transform of Eq.~9!
or ~8! @29#,

uP̂~x,u!2d~x2x0!5Kau12aL̃FPP̂~x,u!, ~10!

where the Laplace transform is defined:

P̂~x,u!5E
0

`

P~x,t !e2utdt. ~11!

Let us briefly recall@12# known properties of the FFPE
~9!. ~i! In the presence of an external time independent bi
ing external field, the stationary solution is the Boltzma
distribution. ~ii ! Generalized Einstein relations are satisfi
consistently with linear response theory@30#. ~iii ! Relaxation
of single modes follows Mittag-Leffler relaxation~related for
example to Cole-Cole relaxation@31# and to work in@1–3#!.
~iv! In the limit a→1, the standard Smolochowski Fokke
Planck equation~4! is recovered.

In Ref. @32# a different fractional Fokker-Planck equatio
based onfractional time derivatives, was investigated. Fol-
lowing Ref. @32# we replace the ordinary time derivative] t
in the Fokker-Planck equation with a fractional time deriv
tive

0Dt
aZ~ t ![

1

G~12a!

]

]t E0

t Z~ t8!

~ t2t8!a
dt8, ~12!

and then Eq.~4! is replaced with

0Dt
aP~x,t !5KaL̃FPP~x,t !, ~13!

where 0,a,1. Jumarie@32# noted that such a fractiona
Fokker-Planck equation is not generally valid, since the P
P(x,t) is not a normalized non-negative function~the discus-
sion on this point in Ref.@32# is not very clear; see furthe
discussion in Ref.@33# and briefly in Ref.@12#!. Interest-
ingly, Arkhincheev @34# considered a random walk on
comb structure for which the number of particles is not co
served@i.e., Eq.~3! is not valid#, and showed that Eq.~13!
@with F(x)50 anda51/2] describes such a process.

It is worth mentioning that other types of fraction
Fokker-Planck equations based on space fractional der
tives were investigated in Ref.@4,35–39# also ~see Refs.
@40–43# for related works and discussion!. Space fractional
equations were used to describe Le´vy flights ~e.g., in chaotic
Hamiltonian systems@4#!, but in contrast we are considerin
subdiffusive behavior. In Ref.@18# a fractional Kramers
equation approach describing superdiffusion was introduc

III. FFPE SOLUTION

In order to find solution of FFPE~9!, we introduce the
ansatz
8-2
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P~x,t !5E
0

`

n~s,t !P1~x,s!ds, ~14!

where

]P1~x,s!

]s
5L̃FPP1~x,s!. ~15!

P1(x,s) in Eq. ~15! is a normalized solution of the ordinar
Fokker-Planck equation with initial conditionsP1(x,s50)
5d(x2x0) and free boundary conditions. We shall so
prove that Eq.~1! is valid, namely,

n~s,t !5
1

a

t

s111/a
l aS t

s1/aD , ~16!

wherel a(z) in Eq. ~16! is a one sided Le´vy stable probability
density whose Laplacez→u transform is

l̂ a~u!5 exp~2ua!. ~17!

We then show that Eq.~14! is identical to the solution found
in Ref. @12#, thus justifying our initial ansatz. ForF(x)50,
and within the context of fractional kinetic equations, E
~14! was first investigated in Ref.@17#. In Eqs.~14! and~16!
we usedKa51; later we restore physical units.

We use the Laplace transform of Eq.~14!, and the nor-
malization condition ofP(x,t) to show

E
0

`

n̂~s,u!ds51/u. ~18!

From Eq.~18! we see thatn(s,t) is normalized according to
*0

`n(s,t)ds51. Inserting Eq.~14! into Eq. ~10!, we find

uE
0

`

n̂~s,u!P1~x,s!ds2d~x2x0!

5u12aE
0

`

n̂~s,u!L̃FPP1~x,s!ds. ~19!

Integrating by parts using Eq.~15!, we find

u E
0

`

n̂~s,u!P1~x,s!ds2d~x2x0!

5u12a@ n̂~`,u!P1~x,s5`!2n̂~0,u!P1~x,s50!#

2u12aE
0

`F ]

]s
n̂~s,u!GP1~x,s!ds. ~20!

From Eq.~18!, n̂(`,u)50, andP1(x,s5`) in Eq. ~20! is
the stationary solution of the standard Fokker-Planck eq
tion, namely, the Boltzmann distribution~i.e., assuming
binding potential!, and sinceP1(x,s50)5d(x2x0) we may
rewrite Eq.~20!:
04611
.

a-

E
0

` H un̂~s,u!1u12aF ]

]s
n̂~s,u!G J P1~x,s!ds

5@12u12an̂~0,u!#d~x2x0!. ~21!

Equation~21! is solved once both of its sides are equal
zero; therefore, two conditions must be satisfied:

n̂~0,u!5ua21 ~22!

and

]

]s
n̂~s,u!52uan̂~s,u!. ~23!

The solution of Eq.~23!, with initial condition ~22!, is

n̂~s,u!5ua21 exp~2uas!. ~24!

The inverse Laplace transform ofn̂(s,u) is n(s,t) @Eq. ~16!#.
Let us now show that solution~14! is identical to the

solution found in Ref.@12#. We rewriteP1(x,s) using a well
known eigenfunction expansion@26#

P1~x,s!5eF(x)/22F(x0)/2(
n

cn~x!cn~x0!e2lns. ~25!

Here the functionscn(x)5eF(x)/2fn(x) are related to eigen
functions of the Fokker-Planck operatorL̃FP, fn(x) via the
scaled potentialV(x)/T and F(x)52V8(x), while ln are
the corresponding eigenvalues@26#. We now insert Eq.~25!
into the Laplace transform of Eq.~14! using Eq.~24!:

P̂~x,u!5E
0

`

ua21e2sua
eF(x)/22F(x0)/2

3(
n

cn~x!cn~x0!e2lnsds. ~26!

We change the order of integration and summation, and
the identity

ua21E
0

`

e2sua2slnds5
ua21

ua1ln

; ~27!

applying the inverse Laplace transformu→t, we find

P~x,t !5eF(x)/22F(x0)/2(
n

cn~x!cn~x0!Ea~2lnta!.

~28!

where Ea(z) is the Mittag-Leffler function. Equation~28!
was found in Ref.@12#, based on the method of separation
variables.

Remark 1. n(s,t) is a non-negative PDF normalized a
cording to*0

`n(s,t)ds51. It is easy to understand that so
lution ~14! is normalized and non-negative, since bo
P1(x,s) andn(s,t) are PDF’s.
8-3
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Remark 2.Properties ofn(s,t) can be found based o
known properties ofl a(z) discussed in Appendix A~also see
Ref. @17#!. For a51, n(s,t)5d(s2t), as expected.

Remark 3.Deriving Eq.~14!, we assumed free boundar
conditions. One can generalize our results for other type
boundary conditions—for example, an absorbing bound
condition which is important for the analysis of anomalo
current in time of flight experiments, which we discuss
Sec V. Generalization of our result for dimensiond.1 is
straightforward.

Remark 4.We now restore physical units, using Eq.~16!,

P~x,t !5
1

a S Ka

K1
D 1/a

tE
0

` 1

t8111/a
l aS Ka

1/at

K1
1/at81/aD P1~x,t8!dt8,

~29!

and P1(x,t8) is the corresponding solution of the ordina
Fokker-Planck equation in the time domain. The solut
P(x,t) does not depend on the arbitrary choice ofK1, while
obviouslyP1(x,t8) does.

Remark 5.Transformations~1!, ~14!, and ~29! have the
same meaning. We have suggested calling this transfor
tion an inverse Le´vy transform. The meaning of the transfo
mation can be understood based on the CTRW discusse
Sec. IV. The transformation, for the force free case, appea
previously in Refs.@15–18# ~also see Ref.@44# for related
work!.

Remark 6.It might be interesting to see if dynamics of th
FFPE are compatible with Hilfer’s theory of fractional d
namics@45# ~i.e., see Eq. 3.11 in Ref.@45#!.

A. Example 0, force free fractional diffusion

The aim now is to show that the solution found in Sec
is identical to the known solution of a fractional diffusio
equation ind dimensions@5#

]P~r ,t !

]t
50Dt

12a¹2P~r ,t !. ~30!

It is easy to generalize Eq.~14! to dimensiond.1. For the
force free case we then find

P~r ,t !5E
0

`

n~s,t !
1

~4ps!d/2
expS 2

r 2

4sDds, ~31!

where we used the well known Gaussian solution of the
dinary diffusion equation~i.e., assuming initial conditions
concentrated on the origin!. Applying the Laplace transform
with respect to timet,

P̂~r ,u!5
ua21

~2p!d/2 S r

ua/2D 12d/2

Kd/221~rua/2!, ~32!

whereKd/221 denotes the Bessel function of the second ki
Schneider and Wyss@5#, Laplace inverted Eq.~32! using the
Mellin transform, and found a solution in terms of the FoxH
function:
04611
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P~r ,t !5a21p2d/2r 2dH12
20

3S 222/ar 2/at21U~1,1!

~d/2,1/a!,~1,1/a!
D . ~33!

For d51 the solution can be represented in terms of sta
densities@5#. The asymptoticj[r 2/ta@1 behavior is@5#

P~r ,t !;kar 2djd/2(22a)exp~2l1j1/(22a!, ~34!

where

ka5p2d/222d(22a)~22a!21/2a [a(d11)/221]/(22a)]

and

l15~22a!aa/(22a)222/(22a).

The behavior ofP(r ,t) for j!1 andd53 is found in Ap-
pendix B, based on the series expansion of theH function
@46,47#:

P~r ,t !5
1

4pt3a/2j1/2 (
n50

`
~21!njn/2

n!G@12a~11n/2!#
. ~35!

We see that ford53, aÞ1, and whenr→0 the normalized
solution diverges likeP(r ,t);1/r as pointed out in Ref.
@48#. The behavior in dimensiond51 and 2 is briefly dis-
cussed in the Appendixes.

While the solution in terms of the FoxH function is
clearly a step forward, one cannot in general find tables
numerical packages with which explicit values of the so
tion can be found~i.e., for d.1). Therefore a numerica
solution using the integral transformation@Eq. ~31!# is an
important tool. Here we check that such a numerical
proach works well fora51/2 andd53. Also, generaliza-
tions to other cases seem straightforward. To find our res
we use theMATHEMATICA command NIntegrate. We ar
mainly concerned about whether the numerical solut
works well close to the singular pointr→0. In Fig. 1 we
show P(r ,t) versusr on a semilog plot and for differen
timest. Close to the originr 50 we observe a sharp increas
of P(r ,t), as predicted in Eq.~35!. More detailed behavior of
P(r ,t) is presented in Fig. 2, where we showrP(r ,t) versus
r. In Fig. 2 we also exhibit linear curves based on t
asymptotic expansion@Eq. ~35!#, which predicts

rP~r ,t !;C1~ t !2rC2~ t ! ~36!

where C1(t)51/(4p3/2t1/2) and C2(t)51/@4pG(1/4)t3/4#.
Equation~36! is valid whenj5r 2/t1/2!1, and we see tha
the numerical solution and the asymptotic equation~36!
agree well in the limit. Finally, in Fig. 3 we show our resul
in a scaling form. We presentr 3P(r ,t) versusj for different
choices of timet observing scaling behavior of the solutio
We also show the asymptotic behaviorsj@1 andj!1, Eqs.
~34! and ~35!, respectively.
8-4
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FIG. 1. P(r ,t) vs r on a semilog plot, and for
different timest50.02 ~dotted line!, t52 ~dash
dotted line! and t5200 ~dashed line!, with a
51/2 andd53. Note thatP(r 50,t)5`; hence
the solution in the figure is cut off close tor
→0. To obtain our results we used Eqs.~31! and
~A7! andMATHEMATICA .
io

ith

k

B. Example 1: biased fractional Wiener process

Consider a biased one-dimensional fractional diffus
process defined with a generalized diffusion coefficientKa
and a uniform force fieldF(x)5F.0. For this case the
mean displacement grows more slowly than linearly w
time, according to

^x~ t !&5
FKata

TG~11a!
. ~37!

The well known solution of the ordinary Fokker-Planc
equation, withK151, is

P1~x,t8!5
1

A4pt8
expF2

~x2Ft8/T!2

4t8
G ; ~38!
04611
n

this describes a biased Wiener process. The solutionP(x,t)
for the fractional case is found using transformation~14!. In
Laplaceu space the solution is

P̂~x,u!5
Fua21ta

TA114~ut!a

3expFF@x2A114~ut!auxu#
2T G , ~39!

and ta5T2/(F2Ka). For (tu)a!1, corresponding to the
long time behavior of the solutionP(x,t), we find
-

FIG. 2. Behavior ofP(r ,t) close to the origin
r 50 for a51/2 and d53. We show~dashed
curves! rP(r ,t) vs r for different times indicated
in the figure. Also shown~linear curves! is the
approximation Eq.~36!. As expected whenj
5r 2/ta!1, the approximation is in good agree
ment with the inverse Le´vy transform solution
@Eq. ~31!#.
8-5
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FIG. 3. Scaling behavior ofP(r ,t) for a
51/2 andd53. We showr 3P(r ,t) vs j5r 2/ta

for times t50.02 ~dotted line!, t52 ~dash dotted
line!, and t5200 ~dashed line!. Due to the exact
scaling of the solution one cannot distinguish b
tween the three curves in the figure. Also show
~solid curves! are the two asymptotic behavior
valid for small and large values of the scalin
variablej. For j@1 we used Eq.~34!, and for
j!1 we used the leading term in the expansi
@Eq. ~35!#.
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P̂~x,u!;H F

T
ua21ta expF2

F

T
tauaxG

F

T
ua21ta expF2

F

T
uxu~11taua!GU

x.0

x<0.
~40!

Since *2`
0 P̂(x,u);ua21 and, according to a Tauberia

theorem,*2`
0 P(x,t);1/ta, henceP(x,t)50 for x,0 when

t→`. Therefore, using the inverse Laplace transform of E
~40! the asymptotic behavior ofP(x,t) is

lim
t→`

P~x,t !5H 1

aA1/a

t

x111/a
l aS t

A1/ax1/aD
0

U0,x

0.x,

~41!

andA5(F/T)ta. Integrating Eq.~41!, we find the distribu-
tion function

lim
t→`

E
2`

x

P~x,t !dx512LaS t

A1/ax1/aD , ~42!

valid for x.0. Equation~42! was also derived in Ref.@49#,
based on the biased CTRW in the limitt→`; thus, the so-
lution of the fractional Fokker-Planck equation in a line
external field, converges to the solution of the biased CTR
in the limit of larget.

At the origin one can use the Tauberian theorem to sh
that

P~0,t !;
A

G~12a!
t2a ~43!

valid for long times. For the caseF50 we found P(0,t)
;t2a/2, so, as expected, the decay on the origin is faster
the biased case, since particles are drifting away from
origin.
04611
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In Fig. 4 we present the solution for the casea51/2;
then, according to Eq.~29!,

P~x,t !5
1

AtK1/2
2 p

E
0

` 1

A4pt8

3expF2
t82

4K1/2
2 t

2
~x2Ft8/T!2

4t8
Gdt8, ~44!

which is evaluated numerically. For large times,

P~x,t !;
A

Apt
expF2

A2x2

4t G ~45!

for 0,x. As seen in the figure, the exact result exhibits
strong sensitivity on the initial condition, and the maximu
of P(x,t) is located onx50. This is different from an ordi-
nary diffusion process, in which the maximum ofP(x,t) is
on ^x(t)&. The curves in Fig. 4 are similar to those observ
by Scher and Montroll@21#, based on lattice simulation o
the CTRW and also by Weissmanet al. @50# who investi-
gated the biased CTRW using an analytical approach.
FFPE solution presented here is much simpler than
CTRW solution, still it captures all the important features
the more complex CTRW result.

C. Example 2: fractional first passage time problem
for the fractional biased Wiener process

The first passage time is the time a particle first leave
given domain. We shall consider the first passage time o
one-dimensional particle in the presence of an external lin
field F(x)5F.0. The investigation of the first passage tim
problem in a nonlinear force field will soon follow. At time
t50 the particle is located onx50, and the absorbing
boundary is on x5a.0, which mathematically mean
P(a,t)50. Solutions of the FFPE with special bounda
8-6
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FIG. 4. The dynamics ofP(x,t) for the frac-
tional diffusion process in an external linear forc
field F. We show the solution for four differen
times. The dotted curve is the asymptotic soluti
valid for larget. The maximum ofP(x,t) is for
all times on the initial conditionx50. We use
F5T5K1/251 anda51/2.
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conditions can be found using the standard methods of s
tion of the ordinary Fokker-Planck equation, and we use
method of images to find, in Laplace space,

P̂~x,u!5 ĵ~x,u!2eFa/Tĵ~x22a,u!, 2`,x,a,
~46!

where

ĵ~x,u!5
Fua21ta

TA114~ut!a
expFF~x2A114uatauxu!

2T G
~47!

is the solution of the FFPE with the free boundary condit
@Eq. ~39!#. Since we showed in Sec. III B how to obta
j(x,t), one can also findP(x,t).

The survival probabilityS(t) ~i.e., the probability that the
particle did not reacha until time t) in Laplaceu space is

Ŝ~u!5E
2`

a

P̂~x,u!dx. ~48!

Inserting Eq.~46! into Eq. ~48!, and integrating, we find

Ŝ~u!5
1

u H 12 expFF~12A114uata!a

2T G J . ~49!

Let t f be the random time it takes the particle to reacha for
the first time. The probability density function of the fir
passage timet f is

h~ t f !52
dS~ t f !

dtf
, ~50!

or, in Laplacet f→u space,

ĥ~u!52uŜ~u!11. ~51!
04611
u-
e
Using Eq.~49!, we find

ĥ~u!5 expFF~12A114uata!a

2T G . ~52!

Since ĥ(u50)51, h(t f) is a normalized PDF. ForF50
our result reduces to what was found previously by B
akrishnan@6#:

ĥ~u!5 expS 2
ua/2

AKa

aD ; ~53!

thus forF50, h(t f) is a one sided Le´vy stable density with
index a/2, and therefore, for larget f

h~ t f !;
aa

2G~12a/2!AKa

t f
2(11a/2) . ~54!

For a51 andF50, we find the well known solution of the
integer first passage time@51#. For finiteF, we find the large
time behavior ofh(t f) using the smallu behavior of Eq.
~52!. A short calculation yields

h~ t f !;
aTa

G~12a!FKa
t f

2(11a) , ~55!

valid for a,1. This behavior is very different from the stan
dard case whenF.0 anda51, which exhibits an exponen
tial decay. The decay found in Eq.~55! for F.0 is faster
than the decay found in Eq.~54! for F50; this is expected,
since the external field transports the particle toward the
sorbing boundary. In Fig. 5 we show the survival probabil
S(t) for a51/2. To findS(t) we first findj(x,t), the solu-
tion of the FFPE with a free boundary condition@Eq. ~44!#;
we then findP(x,t) defined in Eq.~46!, and integrate overx
according to Eq.~48!. For short timesS(t)51, since then the
probability packet does not reach the absorbing boundar
8-7
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FIG. 5. The survival probability~stars! for the
biased fractional Wiener process vst. We choose
a51/2, K1/25F5T51, anda510. The dashed
curve is the asymptotic behaviorS(t);t21/2/Ap.
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a. After a transient time the survival probability follow
S(t);t2a, as predicted in Eqs.~50! and ~55!. The transient
time will be investigated further in Sec. V in the context
dispersive time of flight experiments.

D. Example 3: fractional first passage time problem
in a nonlinear field

Let us consider the more general case of a o
dimensional particle in a force fieldF(x) with initial condi-
tion d(x2x0) and absorbing boundary conditionP(a,t)50,
wherea.x0. We show that the inverse Le´vy transform can
be used to find the relation between the fractional surv
probability Sa(t) and the correspondingS1(t). Using Eq.
~29! and Sa(t)5*2`

a P(x,t)dx, changing the order of inte
grations we find

Sa~ t !5
1

a S Ka

K1
D 1/a

tE
0

` 1

t8111/a
l aS Ka

1/at

K1
1/at8

D S1~ t8!dt8,

~56!

and, in Laplace space,

Ŝa~u!5S K1

Ka
Dua21Ŝ1S K1

Ka
uaD . ~57!

From this relation it can be shown that, ifS1(t) is a sum of
purely decaying exponentials,Sa(t) is a sum of purely de-
caying Mittag-Leffler functions with indexa @i.e., this is
similar to behavior in Eqs.~26!–~28!#. The PDF of escape
timesh(t f) is, in Laplaceu space,

ĥa~u!52uŜa~u!11; ~58!

therefore using
04611
-

l

ĥa~u!52ua
K1

Ka
E

0

`

e2ua(K1 /Ka)tS1~ t !dt11, ~59!

S1~ t !52E
0

t

h1~ t8!dt811, ~60!

and the convolution theorem of Laplace transform, we fin

ĥa~u!5ĥ1S ua
K1

Ka
D . ~61!

It is easy to verify that Eqs.~52! and~53! are special cases o
Eq. ~61!.

Since ĥa(u50)5ĥ1(u50), normalization of the possi
bly defected~i.e., un-normalized! PDF ha(t f) is identical to
the normalization of the correspondingh1(t f). h1(t f) is not
normalized if there exist a finite probability of not reachin
the boundary in the time interval (0,`). For example, when
the force field is negative and linear,F(x)52F,0 with
x0,a, since then the net transport occurs in a direction aw
from the boundary and not all particles reach pointa. For
such a defected case it might be more convenient to cons
the survival probabilityS(t), not h(t f).

E. Example 4: first passage time in three dimensions

Our results in Sec. III D can be generalized to higher
mensions. Assume that ad53 fractional random walk is
described by a force free fractional Fokker-Planck equati
with the initial condition

P~r ,t50!5
d~r 2R0!

4pr 2 . ~62!

Let the random walk terminate once the particle reache
sphere with radiusa,R0, whose center is at the origin. Th
solution of the first passage time, fromR0 to a, is found
using either the method of images or the inverse Le´vy trans-
form. We find
8-8
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FIG. 6. The dynamics ofP(x,t) for the frac-
tional Ornstein-Uhlenbeck process witha51/2
and K1/251. We show the solution for four dif-
ferent times. The dotted curve is the stationa
solution, i.e., the Boltzmann distribution whic
for the harmonic potential is Gaussian. Note t
cusp on the initial conditionx5x051/2.
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ĥ~u!5
a

R0
expF2~R02a!

ua/2

Ka
1/2G ; ~63!

hence (R0 /a)h(t f) is a one sided Le´vy stable density with
indexa/2. Note that Eq.~63! is similar to the corresponding
one-dimensional solution@Eq. ~53!#. Solution~63! is not nor-
malized:

E
0

`

h~ t f !dtf5
a

R0
,1. ~64!

This type of behavior might be expected based on Poly
problem. It is well known that for three-dimensional ordina
random walks on a lattice the probability of return to t
origin is not 1. Here we find a finite survival probabilit
S(t5`)512a/R0, which isa independent.

F. Example 5, fractional Ornstein-Uhlenbeck process

We consider the fractional Ornstein–Uhlenbeck~OU!
process, namely, the motion of a test particle in a harmo
potential investigated previously in Ref.@18#. This case can-
not be analyzed using the CTRW in a direct way since
CTRW formalism considers only uniformly biased rando
walks. We considera51/2 andF(x)/T52x, and use the
well known solution of the ordinary OU process@25,26#:

P1~x,s!5
1

A2p~12e22s!
expF2

~x2x0e2s!2

2~12e22s!
G . ~65!

The solution of the fractional OU process is then found us
a numerical integration of Eq.~14! using Eqs.~A7! and~65!.
Our results are presented in Fig. 6. We have considere
initial condition x051/2, and we observe a strong depe
dence of the solution on the initial condition. A cusp
x5x0 is observed for all timest; thus the initial condition
04611
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has a strong influence on the solution. The solution
proaches the stationary Gaussian shape slowly, in a po
law way, and the solution deviates from Gaussian for a
finite time. Unlike the ordinary Gaussian OU process,
maximum ofP(x,t) is not on the averagêx(t)&; rather the
maximum for short times is located at the initial condition

Like the ordinary OU process, the fractional OU proce
has a special role. The ordinary OU process describes
types of behaviors: the first is an overdamped motion o
particle in a harmonic potential, the second is the velocity
a Brownian particle modeled by the Langevin equation;
latter is the basis for the Kramers equation. In a similar w
the fractional OU process describes an overdamped
anomalous motion in the harmonic potential considered
this section and in Ref.@12#; it can also be used to model th
velocity of a particle exhibiting a Le´vy walk type of motion
@18#. The fractional OU process is the basis of the fractio
Kramers equation introduced recently by Barkai and Silb
@18#. This equation describes super-diffusion, while in th
work we consider subdiffusion.

IV. CONTINUOUS TIME RANDOM WALK

We now discuss the meaning of the inverse Le´vy trans-
form based on the CTRW. The decoupled CTRW, in dime
sion d, describes a process for which a particle is trapped
the origin for timet1, then jumps tor 1, is trapped onr 1 for
time t2, and then jumps to a new location; the process is th
renewed. Letc(t) be the PDF of the independent identical
distributed ~IID ! pausing times between successive ste
and f (r ) the PDF of the IID displacements. In what follow
we assumef (r ) has a finite variance and a zero mean. T
asymptotic behavior of the CTRW is well investigate
@10,16,49,52–55#.

Let P(r ,t) be the PDF of finding the CTRW particle atr
at time t. Let NCT(s,t) be the probability thats steps are
made in the time interval (0,t), and the subscript CT denote
8-9
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the CTRW. Because the model is decoupled,

P~r ,t !5(
s50

`

NCT~s,t !W~r ,s!, ~66!

and W(r ,s) is the probability density that the particle ha
reachedr after s steps.W(r ,s) will generally depend on
f (r ); however, it is usually assumed that in the large tim
limit only contributions from larges are important. From the
standard central limit theorem, we know

W~r ,s!→s→`G~r ,s!5
1

~4ps!d/2
expS 2

r 2

4sD , ~67!

where we use convenient units. Because the steps are
pendent, the convolution theorem of the Laplace transfo
yields

N̂CT~s,u!5
12ĉ~u!

u
exp$s ln@ĉ~u!#%, ~68!

and N̂CT(s,u) is the Laplace transform ofNCT(s,t). If, for
u→0, ĉ(u);12ua

••• @i.e., c(t);t2(11a)] , then, in the
small u limit corresponding to larget,

N̂CT~s,u!;ua21 exp~2sua!. ~69!

The CTRWN̂CT(s,u) is identical ton̂(s,u) found within the
context of the FFPE. Replacing the summation in Eq.~66!
with an integration, using Eqs.~67! and~69! and the inverse
Laplace transform, one finds

P~r ,t !;E
0

`

n~s,t !G~r ,s!ds. ~70!

According to Eq.~70!, derived previously in Ref.@15#, the
large time behavior of the CTRW is described by the inve
Lévy transform of the GaussianG(r ,s). Thus, whenF(x)
50, the FFPE describes the long time behavior of
CTRW, and whenF(x)Þ0 it describes a CTRW type o
behavior in a force field.

Remark 1.If f (r ) is broad ~i.e., the variance of jump
length diverges! the fractional Riemann-Liouville approac
is not valid; instead an approach based on fractional sp
derivatives is appropriate@17#.

Remark 2.From Eq.~70! we learn that the inverse Le´vy
transform has a meaning of a generalized law of large n
bers. Whena51, the mean pausing time is finite; therefor
the law of large numbers is valid, and we expect that
number of steps followss;t. Indeed, for this normal case
n(s,t)5d(s2t). Whena,1 the law of large numbers is no
valid; instead the random number of stepss is described by
the PDFn(s,t).

Remark 3.For r 50 andd.1, Eq. ~70! is not valid. To
see this, consider, for simplicity,W(r ,s)5G(r ,s) and d
53. Then, usingNCT(s,t)<1 and Eq.~66!,
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lim
r→0

P~r ,t !<NCT~0,t !d~r !1(
s51

`
1

A4psd
, ~71!

while, according to Eq.~35!, P(r ,t);1/r when r→0. It is
easy to see that the 1/r behavior found within the solution o
the fractional diffusion equation is due to thes→0 behavior
of n(s,t). This shortcoming found within the framework o
the fractional kinetic equation is due to the fact that we g
statistical weight to CTRW’s withs,1 steps~i.e., replace
summation with integration!.

CTRW, an exact solution

The derivation of Eq.~70! was not mathematically rigor
ous, and our aim now is to check whether it works well fo
specific example. We find an exact solution of the CTR
expressed in terms of an infinite sum of known function
and compare between the exact result and the asymp
expression@Eq. ~70!#.

The solution of the CTRW ink,u space is@10#

P̂~k,u!5
12ĉ~u!

u

1

12ĉ~u! f ~k!
. ~72!

Usually the CTRW solution is found based on a numeri
inverse Fourier-Laplace transform of Eq.~72!, or using the
Monte Carlo approach. Here we find an exact solution of
CTRW process for a special choice off (r ) and c(t). We
assume the PDF of jump timesc(t) to be a one sided Le´vy
stable density, withĉ(u)5 exp(2ua). Displacements are as
sumed to be Gaussian, and then

W~r ,s!5
1

~4ps!d/2
expS 2

r 2

4sD ~73!

is exact, not only asymptotic. For this choice of PDF’s t
solution of the CTRW can be found explicitly. We use

N̂CT~s,u!5
12 exp~2ua!

u
exp~2sua!, ~74!

and the convolution theorem of Laplace transform to find

NCT~0,t !512La~ t !,

NCT~s,t !5LaS t

s1/aD 2LaS t

~s11!1/aD , ~75!

and

La~ t !5E
0

t

l a~ t !dt ~76!

is the one sided Le´vy stable distribution. Inserting Eqs.~73!
and ~75! into Eq. ~66!, we find
8-10
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FIG. 7. We showr 3P(r ,t) vs j5r 2/ta for the
CTRW process and fora51/2 d53. The curves
in the figure,t52 ~dot dashed line!, t520 ~dotted
line!, t5200 ~dashed line!, and t52000 ~stars!
converge in the limitt→` to the asymptotic
curve ~solid!. The asymptotic curve was com
puted using Eq.~70!. It is difficult to distinguish
between the results fort5200 and 2000 and the
asymptotic result. Not shown is the delta functio
contribution atr 50.
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P~r ,t !5@12La~ t !#d~r !1(
s51

H LaF t

s1/aG
2LaF t

~s11!1/aG J 1

~4ps!d/2
expS 2

r 2

4sD . ~77!

The first term on the right hand side describes random w
for which the particle did not leave the origin within th
observation timet; the other terms describe random wal
where the number of steps iss. In Fig. 7 we show the solu
tion of the CTRW process in a scaling form. We conside
three-dimensional case,a51/2, and use

L1/2~ t !5
1

Ap
G@1/2,1/~4t !#. ~78!

Here G(•,•) denotes the incomplete gamma function. T
figure showsr 3P(r ,t) versus the scaling variablej5r 2/ta.
For large timest the CTRW solution converges to the sol
tion of the fractional diffusion equation already presented
Fig. 3.

Let us calculate the Cartesian moments of the CTRW p
cess,

M ~2m1 , . . . ,2md!

5E
2`

`

dx1•••E
2`

`

dxdx1
2m1

•••xd
2mdP~x1 , . . . ,xd ,t !,

~79!

with non-negative integersm1 ,m2 , . . . . Clearly, the odd
moments equal zero, and, from normalization,M (0, . . . ,0)
51. In Appendix C we find
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M ~2m1 , . . . ,2md!5Cm,d(
s51

H LaF t

s1/aG
2LaF t

~s11!1/aG J sm, ~80!

with

Cm,d5
22m

pd/2 )i 51

d

GS mi1
1

2D , ~81!

andm5( i
dmi.0. In the Appendixes we also show that, f

t→`,

M ~2m1 , . . . ,2md!;Cm,dG~11m!
tam

G~11am!
. ~82!

To derive Eq.~82!, we used the smallu expansion of the
Laplace transform of Eq.~80!, and the Tauberian theorem
One can easily show that the moments in Eq.~82! are iden-
tical to the moments obtained directly from the integ
transformation@Eq. ~70!#. Hence our interpretation of Eq
~70! as the asymptotic solution of the CTRW is justifie
@however, our derivation of Eq.~82! is based on a specific
choice ofc(t) and f (r )].

V. SCHER-MONTROLL TRANSPORT

In this section we show that the FFPE approach is co
patible with the SM model for dispersive transport. Sch
and Montroll used a CTRW with an absorbing bounda
condition to model photoconductivity in amorphous sem
conductor As2Se3 and an organic compound TNF-PVK
finding a.0.5 anda50.8, respectively. In the semiconduc
tor experiment, holes are injected near a positive electro
and then transported to a negative electrode where they
8-11
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FIG. 8. We show the velocity vs time. Fo
short ~long! times we observet2(12a) and
@ t2(11a)# decays which characterize current
time of flight experiments in disordered medium
The dashed curves are the asymptotic express
given in Eq.~86!. The solid curve is found using
Eq. ~93! and the stars are based on exact nume
cal solution of the FFPE. Also indicated is th
transition timett . We usea51/2, K1/25F5T
51, anda510.
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absorbed. The experiments showed that the current is
compatible with Gaussian transport. The transient curren
these time of flight experiments follows two types of beha
iors,

I ~ t !; H t2(12a)

t2(11a)Ut,tt

t.tt , ~83!

wherett is a transient time. For Gaussian transport proces
charge carriers move at a constant velocity, and after a t
sient time, depending on the thickness of the sample
external field, the charge carrier is absorbed. Hence, for
mal processes found in most ordered material, the curren
a step shape. Since experimental data of normalized cu
I (t)/I (tt) versus timet/tt , for different sample thicknes
and external fields, collapse onto one scaling curve descr
by Eq. ~83!, the phenomena was designated universal.
widespread occurrence of these features in a variety of
ordered materials confirms the universality of the appro
@22–24,56,57#

SM showed how to calculatec(t) using an effective me-
dium approach, and averaging over many exponential p
cesses. The exponenta may depend on temperature and
other control parameters. Here we considera as a fit param-
eter. The basic assumptions SM used are as follows:

~i! The current of charge carriers is modeled by one
mensional process. Since^x(t)&Þ0 only in the direction of
the applied external linear field, this assumption works w

~ii ! The absorbing boundary condition atx5a and the
effect of the other boundary conditions are neglected. Si
the transport is in the direction of the absorbing bounda
this assumption is reasonable.

~iii ! The measured current is given byI (t)}^v(t)&.
^v(t)& is the time derivative of the mean displaceme
^x(t)&, which is calculated based on the decoupled CTR
on a lattice.
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~iv! Additional assumptions are discussed in the literat
@21,58–60#.

We describe the transport process based on the FFPE

]P~x,t !

]t
5 0Dt

12aKaS 2
]

]x

F

T
1

]2

]x2D P~x,t !, ~84!

with initial condition P(x,t50)5d(x) and the absorbing
boundary conditionP(a,t)50. Due to the boundary, condi
tion P(x,t) is not normalized. Therefore, the meaning
^x(t)& is not straightforward. We imagine that a charge c
rier, once reaching the boundary ata, is trapped there and no
removed. Therefore,

^x~ t !&5E
2`

a

xP~x,t !dx1@12S~ t !#a, ~85!

whereS(t) is the survival probability. From Eq.~85!, ^x(t
50)&50 and^x(t5`)&5a. The first term on the right hand
side of Eq.~85! describes processes in the bulk, while t
second describes the reduction of the number of parti
participating in the process.

Since in Sec. IV we showed how to calculateP(x,t) and
S(t), using the inverse Le´vy transform, the calculation o
^x(t)& and hence of̂ v(t)& becomes straightforward. Th
integrals involved are easily calculated using standard
merical packages, and we usedMATHEMATICA . Our results
for the averaged velocity anda51/2 are presented in Fig. 8

The time behavior of̂ x(t)& is investigated in Appendix
D, based on the smallu behavior ofP̂(x,u) andŜ(u). When
a@T/F, we find

^v~ t !&;H aFKa

TG~11a!
t2~12a!

aa2T

2FKaG~12a!
t2~11a!

U t!t r

t@tt ,

~86!
8-12
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which is similar to Eq.~83!. These behaviors can be eas
understood. For short times the absorbing boundary ha
effect, and̂ v(t)& is the time derivative of Eq.~37!. For long
times the second term on the right hand side of Eq.~85! is
important, using Eqs.~50! and ~55!:

^v~ t !&;2aṠ~ t !5ah~ t !;t212a. ~87!

As shown in Appendix D, the bulk term in Eq.~85! @i.e.,
*2`

a xP(x,t)dx# also contributes to the current, this cont
bution being negative.

A convenient definition oftt is the time at which the
extrapolated asymptotic dashed lines in Fig. 8 intersect.
ing Eq. ~86!,

tt5F G~11a!

2G~12a!G
1/2aS aT

FKa
D 1/a

. ~88!

Sincett is measurable,F,T, anda are known system param
eters, anda can be determined from the current slopes, o
can determine the value ofKa from experiment. If we as-
sumeKa is independent of the force fieldF, we find

tt;S a

F D 1/a

, ~89!

in agreement with the SM prediction.
Let us now further demonstrate the effectiveness of

inverse Lévy transform. The mean velocity in an ide
Gaussian transport system~i.e., a51) is given by a step
function behavior

^v1~ t !&5
FK1

T
, t,~aT/FK1!, ~90!

and ^v1(t)&50 otherwise. This behavior is a simplificatio
of the approximately step current observed in time of flig
experiments in normal~i.e., ordered! systems. The mean dis
placement in such an ideal process is

^x1~ t !&5H FK1t

T
a
U t,~aT/FK1!

t.~aT/FK1!.
~91!

The velocity for the fractional process is found in two ste
First find^x(t)& by applying the inverse Le´vy transform@Eq.
~29!#, to the mean displacement of ideal Gaussian proc
@Eq. ~91!#. Second, take the time derivative of the mean d
placement to find̂v(t)&. The result we find is

^v~ t !&5
aFKa

T
ta21E

t*

`

dz
l a~z!

za
. ~92!

t* 5@FKa /(Ta)#1/at is a dimensionless time in the problem
For short timest* we may take the lower limit of the integra
to zero; using*0

`dzla(z)/za51/G(11a), we find the short
time behavior in Eq.~86!. The long time behavior in Eq.~86!
is also easily found by noting thatl a(z);az2(11a)/G(1
2a) for z→`. For a51/2, we find
04611
no

s-

e

e

t

.

ss
-

^v~ t !&5
1

Ap

FK1/2t
21/2

T F12 expS 2
T2a2

4F2K1/2
2 t

D G ; ~93!

as shown in Fig. 8, this equation interpolates between
short and long time behaviors of^v(t)&.

Using Eqs.~88! and ~92!, we prove the scaling behavio
of the current, similar to what is observed in many expe
ments. We find

I ~ t !

I ~ tt!
5

^v~ t !&

^v~ tt!&
5FS t

tt
D , ~94!

and the scaling function is

S~x!5c2xa21E
c1x

` l a~z!

za
dz, ~95!

with

c25F E
c1

` l a~z!

za
dzG21

, ~96!

andc15@G(11a)/„2G(12a)…#1/a. We see that the invers
Lévy transform approach predicts the scaling functionS(x)
for the time of flight experiments. Within the CTRW w
expect the scaling function to depend on details ofc(t) in
the vicinity of the transition timett .

The FFPE is compatible with linear response theory, a
the generalized Einstein relations hold@13,30# ~i.e., assuming
a and Ka are independent of the external field!. Hence the
FFPE describes a physical system in a weak external fi
Experiments are not limited to weak external fields, and th
one might be able to fit data using a field dependentKa .
Barkai and Fleurov@30# calculatedc(t) for a specific type of
disorder and in an external field, and predicted a transition
Gaussian behavior for long enough times and strong eno
fields. Thus we expect the FFPE to give the correct beha
only in the linear response regime, or, when the field
comes strong, only within a certain time span.

VI. SUMMARY

The fractional Fokker-Planck equation~FFPE! is a simple
single exponent stochastic framework describing subdi
sive transport in a nonlinear external field and close to th
mal equilibrium. The inverse Le´vy transform gives the solu
tion of the FFPE in terms of the corresponding solution of
ordinary Fokker-Planck equation. The integral transform
tion also describes the long time behavior of the CTRW
dimensionsd51, 2, and 3. Thus the transformation ma
Gaussian diffusion onto fractional diffusion, and it can ser
as a tool for finding the solution of certain fractional kinet
equations.

The solution of the CTRW for a special choice off (r )
andc(t) was also found. This solution is a useful tool for
detailed comparison between the CTRW and the FFPE.
exact solution can also be used to check the accurac
numerical solutions of the CTRW.
8-13
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All through this work we have emphasized the relati
between the FFPE and stable laws. The basis of the FFP
the generalized central limit applied to the number of step
the corresponding random walk. In addition, for a particle
a binding external potential the stationary solution is
Boltzmann equilibrium. These features, and the relation
the FFPE with the CTRW, are the foundations of the FFP
Recently, a fractional Kramers equation was introduced@18#.
This equation has similar features to the FFPE; howeve
describes superdiffusion.

Transport in ordered media is often modeled using
diffusion equation, this approach being the simplest and m
widely used. Dispersive Scher-Montroll transit time type e
periments, observed in a large number of disordered syst
can be described phenomenologically using the FFPE. T
is only one example of physical phenomena in which a d
ferent kind of calculus, i.e., noninteger calculus, plays a c
tral role.

Note addedAfter this work was completed a review a
ticle on the FFPE@61#, and work on the fractional first pas
sage time problem@62,63#, were published. This work fo
cused on subdiffusion. In Ref.@64#, an extension of the
solution method discussed in this paper for the fractio
wave equation~superdiffusion! was considered.
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APPENDIX A

Lévy stable PDF’s are usually defined by means of th
Fourier transform. One sided stable PDF’s withl a(z)50 for
z,0 and 0,a,1 are defined by

E
2`

`

eikzl a~z!dz5 exp~2ukuae2 i (k/uku)(p/2)a!. ~A1!

It is convenient to express one sided stable PDF’s in term
the Laplace transform

E
0

`

e2uzl a~z!dz5e2ua
, u.0. ~A2!

Thus l a(z) can be found using the~e.g., numerical! inverse
Fourier or inverse Laplace transform. Schneider@65# repre-
sented Le´vy stable densities in terms of Fox theH function
@46,47#:

l a~z!5
1

az2 H1,1
1,0Fz21U ~21,1!

~21/a,1/a!
G . ~A3!

The asymptotic smallz behavior yields@65#

l a~z!;Bz2se2kz2t
, ~A4!
04611
is
in

e
f
.

it

e
st
-
s,
is
-
-

l

r
R.
s

ir

of

where

t5
a

~12a!
, k5~12a!aa/(12a), s5

22a

2~12a!

B5$@2p~12a!#21a1/(12a)%1/2. ~A5!

The largez series expansion is

l a~z!5
1

p (
n51

`
G~11na!

n!
~21!n21 sin~pna!z2(11na),

~A6!

and, using the well known formula, then51 term yields
l a(z);aG(12a)21z2(11a).

Representation of the one sided stable PDF’s in term
other special functions is usually obtained by examining
pansion~A6! and using properties ofG functions. It was
shown @21# that, for any rational value ofa, l a(z) can be
expressed in terms of a finite sum of hypergeometric fu
tions @e.g., l 3/4(z) given in Ref. @21#!#. We list other one
sided stable densities in terms of more familiar functions

~i! The one sided PDF witha51/2, also known as
Smirnov’s density,

l 1/2~z!5
1

2Ap
z23/2e21/(4z). ~A7!

This result can be easily verified using the Laplace tra
form.

~ii ! The one sided stable PDF witha52/3 is given in
terms of Whittaker’sW function

l 2/3~z!5A3

p
z21e2y/2W1/2,1/6~y!, ~A8!

wherey54/(27z2). Note that for this case,@65# points rel-
evant errors in the literature.

~iii ! For a51/3, in terms of the modified Bessel functio
of the second kind

l 1/3~z!5
1

3p
z23/2K1/3S 2

A27z
D . ~A9!

We use the expansion in Eq.~A6! and theMATHEMATICA

command Simplify@•••#, to find for a51/4
8-14
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l 1/4~z!5~6A2AzG~5/4!HPFQ@$ %,$1/2,3/4%,21/~256z!#

23Apz1/4HPFQ@$ %,$3/4,5/4%,21/~256z!#

1A2G~7/4!HPFQ@$ %,$5/4.3/2%,

21/~256z!# !/~12pz7/4!, ~A10!

where HPFQ@•••#5HypergeometricPFQ@•••# is the hyper-
geometric function and we are usingMATHEMATICA nota-
tion. Other representations of stable densitiesl a(z), for ra-
tional exponentsa, can be found in similar way. Howeve
we usedMATHEMATICA Version 4 to find the properties o
Eq. ~A10! for 0,z!1, and found negative values forl 1/4(z),
which were wrong. This probably implies some type of n
merical problem withinMATHEMATICA , at least fora51/4.

APPENDIX B

In this appendix we find the smallj!1 series expansion
of P(r ,t) based on the FoxH function solution. The Fox
function is represented as

Hp,q
m,nFxU~a1 ,a1!•••~ap ,ap!

~b1 ,b1!•••~bq ,bq!
G , ~B1!

and, for our choice of parameters,

m52, n50, p51, q52,

a151, a151,

b15d/2, b151/a, b251, b251/a. ~B2!

The asymptotic expansion of theH Fox function, for 0,x
!1, is defined when two conditions are satisfied@46,47#.
The first is

d5(
j 51

q

b j2(
j 51

p

a j.0, ~B3!

and for the cased50, see Refs.@46,47#. For our case, de
fined by the parameters in Eq.~B2!, d52/a21.0 when 0
,a,1. The second condition is

bh~bj1L!Þb j~bh1k! ~B4!

for

j Þh, j 5h51, . . .m, L,k50,1,2, . . . . ~B5!

Using Eq.~B2! condition ~B5! reads

1

a
~11L!Þ

1

a
~d/21k!; ~B6!

therefore, the condition is satisfied for dimensionsd51 and
3, but not ford52:
04611
-

Hp,q
m,nFxU~a1 ,a1!•••~ap ,ap!

~b1 ,b1!•••~bq ,bq!
G

5 (
h51

m

(
k50

`

P j 51,j Þh
m G~bj2b jjh,k!P j 51

n G~12aj

1a jjh,k!~21!k~x!jh,k@P j 5m11
q G~12bj1b jjh,k!

3P j 5n11
p G~aj2a jjh,k!k!bh#21, ~B7!

where

jh,k5~bh1k!/bh . ~B8!

Using Eq.~B7!, we find

H1,2
2,0FxU~1,1!

~d/2,1/a!,~1,1/a!
G

5aH (
k50

`
G~12d/22k!~21!kxa(d/21k)

G~12ad/22ak!k!

1 (
k50

`
G~d/2212k!~21!kxa(11k)

G~12a2ak!k! J . ~B9!

Using some simple manipulations, ford51 we find

P~r ,t !5
1

2ta/2 (
n50

`
~21!njn/2

n!G@12a~n11!/2#
~B10!

and, ford53, Eq. ~35!.
For d52 the asymptotic expansion of the Fox function

not known. Using Eq.~31! one can show that ford52, and
j!1

P~r ,t !;
1

pG~12a!ta
ln@ ta/2/r #. ~B11!

Equation~B11! was derived independently by Saichev@66#.

APPENDIX C

We investigate the Cartesian moments of the CTR
These moments are

M ~2m1 , . . . ,2md!5E
2`

`

dx1•••E
2`

`

dxdx1
2m1x2

m2
•••xd

2md

3(
s51

` H LaF t

s1/aG
2LaF t

~s11!1/aG J 1

~4ps!d/2

3expS 2
x1

21•••1xd
2

4s D . ~C1!
8-15
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Changing the order of integration and summation, we use
identity

E
2`

`

dx1•••E
2`

`

dxd

1

~4ps!d/2

3expS 2
x1

21•••1xd
2

4s D x1
2m1

•••xd
2md5Cm,dsm

~C2!

whereCm,d is defined in Eq.~81!. Inserting Eq.~C2! in Eq.
~C1! we find Eq.~80!.

The Laplace transform of Eq.~80! is

M ~2m1 , . . . ,2md!5Cm,d

12e2ua

u (
s51

`

e2sua
sm.

~C3!

We use

(
s51

`

e2sua
sm5~21!mS d

dxD
m

(
s51

`

e2xsU
x5ua

5~21!mS d

dxD
m e2x

12e2xU
x5ua

, ~C4!

and, for smallua, we find

M ~2m1 , . . . ,2md!;Cm,dG~m11!u212am. ~C5!

Applying Tauberian theorem@i.e., inverting Eq.~C5!# we
find Eq. ~82!.

APPENDIX D

In Laplace space the mean displacement is written a
sum of three terms,

^x̂~u!&5^x̂1~u!&1^x̂2~u!&1^x̂3~u!&, ~D1!

with

^x̂1~u!&[E
2`

a

xĵ~x,u!dx, ~D2!

^x̂2~u!&[eFa/TE
2`

a

xĵ~x22a,u!dx, ~D3!

and

^x̂3~u!&[F1

u
2Ŝ~u!Ga. ~D4!

We define

E[
Fua21ta

TG
, ~D5!

G[A114uata, ~D6!
04611
e

a

B6[
F

2T
~16G!. ~D7!

Then it is easy to show that

^ x̂1~u!&5E
~aB221!eB2a11

B2
2

2
E

B1
2 . ~D8!

For uata→0, we find

^x̂1~u!&;S a2F

2T
2

T

F Dua21ta. ~D9!

We use the conditiona@T/F, and then

^x̂1~u!&;
a2F

2T
ua21ta. ~D10!

We therefore find, for long times,

^x1~ t !&;
a2T

2FKa

t2a

G~12a!
. ~D11!

Using the same approach,

^x̂2~u!&52EeFa/Te2B1a
11aB1

B1
2 . ~D12!

For (ut)a→0, we find

^x̂2~u!&52ua21taa, ~D13!

and, therefore, fort→`,

^x2~ t !&52
aT2

FKa

t2a

G~12a!
. ~D14!

Whena@T/F, ^x1(t)&@^x2(t)& for t→`. Using Eq.~50!, it
is easy to see that

^ ẋ3~ t !&5h~ t !a ~D15!

and h(t) is the first passage time PDF. Using Eqs.~55!,
~D11!, and~D14!, we find

^v~ t !&;
aa2T

2FKaG~12a!
t2(11a), ~D16!

valid for t→` and whena@T/F. We note that botĥẋ1(t)&
and ^ ẋ3(t)& contribute to ^v(t)&, the contribution from

^ ẋ1(t)& being negative.
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