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Recently, Metzleet al. [Phys. Rev. Lett82, 3563(1999 ], introduced a fractional Fokker-Planck equation
(FFPB describing a subdiffusive behavior of a particle under the combined influence of external nonlinear
force field, and a Boltzmann thermal heat bath. In this paper we present the solution of the FFPE in terms of
an integral transformation. The transformation maps the solution of ordinary Fokker-Planck equation onto the
solution of the FFPE, and is based ofviss generalized central limit theorem. The meaning of the transfor-
mation is explained based on the known asymptotic solution of the continuous time randofCaW/). We
investigate in detaili) a force-free particle(ii) a particle in a uniform field, andii) a particle in a harmonic
field. We also find an exact solution of the CTRW, and compare the CTRW result with the corresponding
solution of the FFPE. The relation between the fractional first passage time problem in an external nonlinear
field and the corresponding integer first passage time is given. An example of the one-dimensional fractional
first passage time in an external linear field is investigated in detail. The FFPE is shown to be compatible with
the Scher-Montroll approach for dispersive transport, and thus is applicable in a large variety of disordered
systems. The simple FFPE approach can be used as a practical tool for a phenomenological description of
certain types of complicated transport phenomena.
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I. INTRODUCTION

Pa(x,t)=f n(s,t)P(x,s)ds, (1)

Fractional kinetic equations were introduced to describe °
anomalous types of relaxation and diffusion processes: fO\there O<a<1. and
example, relaxation processes in viscoelastic méedia], '
protein dynamic$3], and diffusion processes found in cha- d ¢
otic Hamiltonian systemp4]. Schneider and Wydg$] intro- n(s,t)=—|1—-L <_> )
duced a fractional diffusion equation describing a subdiffu- ds “\ gl
sive process investigated in R¢6], where(r?)~t* and 0
<a<1. The fractional diffusion equation describes thedenotes thénverseone sided Ley stable densityi.e., L ,(x)
asymptotic behavior of the continuous time random walkis the one sided lwg stable distributiorf19,2q]. In Eq. (1),
[6—9], which in turn is known to describe different types of the probability density functiodPDF P ,(X,t) has the same
anomalous transpoftl0,11]. Recently, a fractional Fokker- initial and boundary conditions as the corresponding
Planck equatiofFFPB describing such an anomalous sub- P,(x,t). We call Eq.(1) an inverse Ley transform. For
diffusive behavior in an external nonlinear fiek{x), and  example consider the force free case with free boundary con-
close to thermal equilibrium, was investigatéti2], and  ditions and initial conditions concentrated on the origin. The
whenF(x) =0 the equation coincides with the fractional dif- solution of the FFPEP,(x,t) is found by transforming
fusion equation. In Ref$13,14] the FFPE was derived from P4(x,s), and the transformed function is the well known
a generalized continuous time random weIkrRW), which ~ Gaussian solution of the integer diffusion equation. Transfor-
includes space dependent jump probabilities which are theations similar to Eq(1) hold for dimensions higher than 1.
result of an external field (x). In what follows, we suppress the subscripin P ,(x,t).

The main purpose of this paper is to present a simple In Sec. Il we give definitions, and briefly recall other frac-
method of solving the FFPE. The solution is based on arional approaches related to the FFPE under investigation. A
integral transformation which maps a Gaussian type of difsolution of the problem is discussed in Sec. Ill. Section IV
fusion onto fractional diffusion. The transformation was in- explains the meaning of the transformation based on the
vestigated by Bouchaud and Geordé$] and Klafter and CTRW.

Zumofen[16] in the context of the CTRW. While Saichev =~ We then discuss an application. Scher and Monti®M)

and ZaslavskyRef.[17] and later Ref[18]) considered the [21] modeled transport in a disordered medium based on the
transformation in the context of fractional kinetic equations,CTRW. Using SM predictions, one can explain and fit a
here we generalize these results for the kinetics described Bgrge number of experimental results. For example, recent
the FFPE in Ref[12]. experiments in organic photorefractive glas§2g], nano-

The integral transformation we investigate maps a soluerystalline TO, electrodes[23], and conjugated polymer
tion of the ordinary Fokker-Planck equatid® (x,t), onto  system poly p-phenylene[24] indicate that the Scher-
the corresponding solution of the FFHE,(X,t), according  Montroll results are truly universal. Can one use the FFPE to
to model the SM type of transport? Since transport processes
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(e.g., time of flight measurementare sensitive to boundary It is easy to show thaP(x,t) in Eqg. (9) is normalized; in
conditions, it is not obvious that the FFPE and CTRW pre-Sec. Il we show that the solution is also non-negative. As
dict the same result. Generally a CTRW with boundary conimentioned in Sec. |, the FFP@®) was derived from a gen-
ditions cannot be assumed to be equivalent to the correeralized CTRW in Ref[13]. WhenF(x)=0, the equation
sponding FFPE[13]. Here we show that the FFPE is coincides with the Schneider-Wyss fractional diffusion equa-
compatible with the SM predictions. The FFPE approach is aion [5]. Later we shall use the Laplace transform of E3).
straightforward approach which simplifies the much moreor (8) [29],

complex CTRW. Methods of solutions of standard Fokker-

Planck equation can be used to solve the FFPE, and in some UP(X,u) — 8(x—Xg) = K ,ut ™ “LpP(x,u), (10
cases analytical results can be foyi@]. These simplifica-

tions are the main reason why a stochastic fractional apwhere the Laplace transform is defined:

proach was introduced.

ﬁ’(x,u):f P(x,t)e Udt. (12)
Il. FRACTIONAL FOKKER-PLANCK EQUATION 0
Let P(x,t)=0 be a normalized probability density, Let us briefly recall[12] known properties of the FFPE
(9). (i) In the presence of an external time independent bind-
J‘” P(x,t)dx=1 3) ing external field, the stationary solution is the Boltzmann
e ' distribution. (i) Generalized Einstein relations are satisfied

consistently with linear response the80]. (iii) Relaxation
to find a particle orx at timet. A Gaussian Markovian type of single modes follows Mittag-Leffler relaxatigrelated for
of diffusion, in an external fieldF(x), and close to thermal example to Cole-Cole relaxatigB1] and to work in[1-3]).
equilibrium, was modeled many times based on the lineafiv) In the limit «—1, the standard Smolochowski Fokker-
Smolochowski Fokker-PlanckEP) equation[25,26] Planck equatiori4) is recovered.
In Ref.[32] a different fractional Fokker-Planck equation,

IP(x,t) = based orfractional time derivativeswas investigated. Fol-
ot =KalreP(X,1), ) lowing Ref.[32] we replace the ordinary time derivative
in the Fokker-Planck equation with a fractional time deriva-
with the operator tive
~ d F(x) ¢° . A 1 d ft Z(t") dv 15
FP— 5?4—%! ( ) oYt ( )_F(l—a) ot O(t—t/)a ’ ( )

whereK; andT are the diffusion coefficient and temperature, and then Eq(4) is replaced with
respectively. We consider a generalization of E).based
on fractional Riemann-Liouville integration_Let us rewrite onP(X,t)=KaEFpP(X,t), (13
Eq. (4) in an integral form,

5 where O<a<1. Jumarie[32] noted that such a fractional

P(X,t) — d(Xx—Xg) =K onlLFPPl(x,t), (6) Fokker-Planck equation is not generally valid, since the PDF
P(x,t) is not a normalized non-negative functi@he discus-

whered(x—X,) is the initial condition, and we shall assume sion on this point in Ref[32] is not very clear; see further
free boundary conditions. Replacing the integer integral opdiscussion in Ref[33] and briefly in Ref.[12]). Interest-
eratoroD{l in Eq. (6) with a fractional Riemann-Liouville ingly, Arkhincheev[34] considered a random walk on a

integral operatof27,28 comb structure for which the number of particles is not con-
served[i.e., Eq.(3) is not valid|, and showed that Eq13)
- 1 tZ(t") [with F(x)=0 anda=1/2] describes such a process.
oDy “Z(t)EF(a) fo(t t’)l‘“dt,' (7) It is worth mentioning that other types of fractional

Fokker-Planck equations based on space fractional deriva-
tives were investigated in Ref4,35—-39 also (see Refs.
[40-43 for related works and discussiprSpace fractional
o equations were used to describevidlights (e.g., in chaotic
Po(X,1) = 8(X=X0) =K oDy “LepPo(X,1), 8 Hamiltonian systemB4]), but in contrast we are considering
subdiffusive behavior. In Ref[18] a fractional Kramers

v_vhere_Ka is a g_eneralized difquion poeﬁicient. An o_rdinary equation approach describing superdiffusion was introduced.
time differentiation of the fractional integr@Eq. (8)] yields

the FFPE12];

We find

IIl. FFPE SOLUTION
dP(x,t)
ot

9 In order to find solution of FFPE9), we introduce the

:KangiaEFpP(X,t). ansatz

046118-2



FRACTIONAL FOKKER-PLANCK EQUATION, ...

P(x,t)=fxn(s,t)Pl(x,s)ds, (14

0
where

dP1(x,8) ~

s LepPa(X,8). )

P.(x,s) in Eg. (15) is a normalized solution of the ordinary

Fokker-Planck equation with initial conditior,(x,s=0)

=6(x—Xq) and free boundary conditions. We shall soon

prove that Eq(1) is valid, namely,

_l t t
n(s,t)=— wu e’ (16)

wherel ,(z) in Eq.(16) is a one sided ey stable probability
density whose Laplace—u transform is

7

T, (u)=exp(—u®).

We then show that Eq14) is identical to the solution found
in Ref.[12], thus justifying our initial ansatz. Fd¥(x) =0,

and within the context of fractional kinetic equations, Eq.

(14) was first investigated in Ref17]. In Egs.(14) and(16)
we usedK ,=1; later we restore physical units.

We use the Laplace transform of Ed.4), and the nor-
malization condition ofP(x,t) to show

f n(s,u)ds=1/u.
0

(18)

From Eq.(18) we see than(s,t) is normalized according to
Jon(s,t)ds=1. Inserting Eq(14) into Eq.(10), we find

ufmﬁ(s,u)Pl(x,s)ds— S(X—Xo)
0

:ul—arﬁ(s,u)EFppl(x,s)ds. (19)

0

Integrating by parts using Eq15), we find
uf n(s,u)P;(x,s)ds— 8(x—Xg)
0

=ul"2Tn(%,u)P4(x,5=°)—N(0,u)P1(x,5=0)]

_ul*cz‘foc J
0

a—sﬁ(s,u) P.(x,s)ds. (20)

From Eq.(18), n(e,u)=0, andP;(x,s==) in Eq. (20) is

PHYSICAL REVIEW E63 046118

fw: un(s,u)+ut-¢

0

J A
a—sn(s,u) ]Pl(x,s)ds

=[1-u'"*n(0u)]8(X—Xg). (21)

Equation(21) is solved once both of its sides are equal to
zero; therefore, two conditions must be satisfied:

n(ou)=u*"1! (22)
and
d ~
a—sn(s,u)= —u“n(s,u). (23
The solution of Eq(23), with initial condition (22), is
n(s,u)=u®"lexp —ucs). (24)

The inverse Laplace transform o€s,u) is n(s,t) [Eq. (16)].

Let us now show that solutiol4) is identical to the
solution found in Ref[12]. We rewriteP;(x,s) using a well
known eigenfunction expansidi26]

P1(x,5) =2 P002Y 7y () (xo)e S, (25)

Here the functiong),(x) =e®®/2¢ (x) are related to eigen-
functions of the Fokker-Planck operafogp, ¢,(x) via the
scaled potentiaV(x)/T and F(x)=—V'(x), while \,, are
the corresponding eigenvalugZ6]. We now insert Eq(25)
into the Laplace transform of E414) using Eq.(24):

Is(x, u) = Jmua*lefsu“eé(x)/zfcp(xo)/z
0

xg Yn(X) n(Xo) € ndis. (26)

We change the order of integration and summation, and use
the identity

. N ua—l
UailJ‘ g su 7S)xnds: : (27)
0 u“+ N,
applying the inverse Laplace transfoum-t, we find
P(x,t) =P 00Oy (%) grn(X0) Eal = Nt ).
n
(28)

where E,(z) is the Mittag-Leffler function. Equatiori28)
was found in Ref[12], based on the method of separation of
variables.

the stationary solution of the standard Fokker-Planck equa- Remark 1. ifs,t) is a non-negative PDF normalized ac-

tion, namely, the Boltzmann distributiofi.e., assuming
binding potential, and sinceP;(x,s=0)= 8(X—Xy) we may
rewrite Eq.(20):

cording tofyn(s,t)ds=1. It is easy to understand that so-
lution (14) is normalized and non-negative, since both
P.(x,s) andn(s,t) are PDF’s.
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Remark 2.Properties ofn(s,t) can be found based on P(r,t)=a‘1w‘d’2r‘dHig
known properties of ,(z) discussed in Appendix Aalso see
Ref.[17]). Fora=1, n(s,t)=48(s—t), as expected.

Remark 3.Deriving Eq.(14), we assumed free boundary
conditions. One can generalize our results for other types of

boundary conditions—for example, an absorbing boundary-q, -1 the solution can be represented in terms of stable
condition which is important for the analysis of anomalousdensities[5]_ The asymptoti¢=r2/t*>1 behavior ig5]
current in time of flight experiments, which we discuss in

(1,1

272/& 2/lay—1
MU 2,0 (1,10)

X

) . (33

Sec V. Generalization of our result for dimensidir 1 is ayp —d dI2(2—a) 12— a

. P(r,t)~k“r exp(—A\ , 34
straightforward. (rO~xr7¢ A= Aag ) (34)

Remark 4We now restore physical units, using Ed6), where

1 Va e 1 K&t —di2o—d(2- - —1/(2-
_T | e @ , , K= 17 2 (2—a) 2—w l/2a[0z(d+l)/2 11/(2— )]
P(X’t)_Q/(Kl) tfo trl+l/a a( Ki/at/lla Pl(X’t )dt ! ( )
(29  and

and P4(x,t") is the corresponding solution of the ordinary Ny=(2— a)a®/@-®p-22-a)

Fokker-Planck equation in the time domain. The solution
P(x,t) does not depend on the arbitrary choicekaf while The behavior ofP(rt) for £<1 andd=3 is found in Ap-

obviously P, (x,t") does. . . ; .
Remark 5.Transformationg1), (14), and (29) have the Efgi%( B, based on the series expansion of th&unction

same meaning. We have suggested calling this transform

tion an inverse Ley transform. The meaning of the transfor- w N en/2

mation can be understood based on the CTRW discussed in P(r.t)= 1 (-1 (35)

Sec. IV. The transformation, for the force free case, appeared ' A7t32g12 ;=0 NIT[1-a(1+n/2)]

previously in Refs[15—-1§ (also see Ref{44] for related

work). _ _ , , _ We see that fod=3, a# 1, and wherr —0 the normalized
Remark 61t might be interesting to see if dynamics of the ¢ tion diverges likeP(r,t)~ 1/ as pointed out in Ref.

FFPE are Compatible with Hilfer's theOI’y of fractional dy' [48] The behavior in dimensiod=1 and 2 is bl’leﬂy dis-

namics[45] (i.e., see Eq. 3.11 in Ref45)). cussed in the Appendixes.

_ o While the solution in terms of the Fok function is
A. Example 0, force free fractional diffusion clearly a step forward, one cannot in general find tables or

The aim now is to show that the solution found in Sec. |1humerical packages with which explicit values of the solu-

is identical to the known solution of a fractional diffusion tion can be foundi.e., for d>1). Therefore a numerical
equation ind dimensiong5] solution using the integral transformati¢kq. (31)] is an

important tool. Here we check that such a numerical ap-
dP(r,t) T proach works well fora=1/2 andd=3. Also, generaliza-
o oDt “VIP(rL. (30 tions to other cases seem straightforward. To find our results
we use theMATHEMATICA command Nintegrate. We are
It is easy to generalize E414) to dimensiond>1. For the ~Mainly concerned about whether the numerical solution
force free case we then find works well close to the singular poimt—0. In Fig. 1 we
show P(r,t) versusr on a semilog plot and for different
w 1 r2 timest. Close to the origim =0 we observe a sharp increase
P(r,t)= f n(s,t)——- exp< — 4—) ds, (31)  of P(r,t), as predicted in Eq35). More detailed behavior of
0 (4mrs) S P(r,t) is presented in Fig. 2, where we shof®(r,t) versus

] ] r. In Fig. 2 we also exhibit linear curves based on the
where we used the well known Gaussian solution of the orygymptotic expansiofEq. (35)], which predicts

dinary diffusion equation(i.e., assuming initial conditions
cqncentrated on the originApplying the Laplace transform FP(r,t)~Cy(t)—rCy(t) (36)
with respect to time,

where C,(t)=1/(47%4Y?) and C,(t)=1[4=T (1/4)t34].

a1 1-di2
(_) Kgp 1(ru®?), (32  Equation(36) is valid when¢=r?/t*?<1, and we see that
al2 - !
u

u

P(I’,U)=m

the numerical solution and the asymptotic equati@6)
agree well in the limit. Finally, in Fig. 3 we show our results
whereK y,_ ; denotes the Bessel function of the second kindin a scaling form. We presentP(r,t) versusé for different
Schneider and Wyd$], Laplace inverted Eq32) using the choices of time observing scaling behavior of the solution.
Mellin transform, and found a solution in terms of the Féx We also show the asymptotic behaviges 1 andé<1, Eqs.
function: (34) and (35), respectively.
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102 T T T T T T

1078~ 3 FIG. 1. P(r,t) vsr on a semilog plot, and for
\ '\'\.\\ different timest=0.02 (dotted ling, t=2 (dash
SN \\\.‘;'*&.N ] dotted ling and t=200 (dashed ling with «
& T~ Tl =1/2 andd=3. Note thatP(r=0,)=; hence

- el ) the solution in the figure is cut off close to
mmm— e LT —0. To obtain our results we used E¢31) and
T (A7) and MATHEMATICA .

0 0.5 1 15 2 25 3 35

B. Example 1: biased fractional Wiener process this describes a biased Wiener process. The sollRipqt)
Consider a biased one-dimensional fractional diffusion(©f the fractional case is found using transformatia#). In
process defined with a generalized diffusion coefficikpt ~ -@Placeu space the solution is
and a uniform force field=(x)=F>0. For this case the
mean displacement grows more slowly than linearly with
time, according to

~ Fue 179
te P(x,u)=

<X(t)>:WZ—a)' (37) TV1l+4(un)®
y p[F[x— V1+4(ur)9x|]
ex

The well known solution of the ordinary Fokker-Planck (39

) . : 2T ’
equation, withK;=1, is

_ ’ 2
Pi(xt)= 1 exd — (x—Ft'/T)%), (39) and 7*=T?/(F?K,). For (ru)®<1, corresponding to the
’ Vamt’ 4t’ ' long time behavior of the solutioR(x,t), we find
0.5 0.12
0.4 t=0.02 0.1 t=0.2

0.08

rP(r,h)

0.06

0.04

0.02

FIG. 2. Behavior ofP(r,t) close to the origin
r=0 for a=1/2 andd=3. We show(dashed
15 Y 0.5 1 15 curves rP(r,t) vsr for different times indicated
in the figure. Also showr(linear curves is the
approximation Eq.(36). As expected wher¢

x 10

0.04 R
=r?/t*<1, the approximation is in good agree-
0.035 t=2 82 t=200 ment with the inverse Ly transform solution
[Eq. (3D)].
3
28
26
15 o 05 1 15
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0.057 T T T T T T T T
0.045

0.04

FIG. 3. Scaling behavior of(r,t) for «
=1/2 andd=3. We showr3P(r,t) vs é=r?/t*
for timest=0.02 (dotted ling, t=2 (dash dotted
line), andt=200 (dashed ling Due to the exact
scaling of the solution one cannot distinguish be-
tween the three curves in the figure. Also shown
(solid curve$ are the two asymptotic behaviors
valid for small and large values of the scaling
variable ¢£. For ¢é>1 we used Eq(34), and for
£<1 we used the leading term in the expansion

0.035

0.01 [Eg. (39)].
0.005
0
F o, F x>0 In Fig. 4 we present the solution for the case1/2;
) Tu“ T expg — ?T“U“X then, according to Eq29),
P(x,u)~
—uv lr%ex —E|x|(1+7-“u“) 1 1
T T x=<0. P(x,t)= > J -
(40) VK Jo V4t
Since [°_P(x,u)~u®"! and, according to a Tauberian Y exd — 2 (x=Ft'/T)? dat’. (44
theorem,f‘iocP(x,t)~1/t“, henceP(x,t)=0 for x<0 when 4K§,2t 4t’ '
t—oo. Therefore, using the inverse Laplace transform of Eq.
(40) the asymptotic behavior d?(x,t) is which is evaluated numerically. For large times,
1 t t 0<x A A2X2
P(x,t)~—exp — —— (45)
imP(x,t)=1 gAla yltla @\ pllaylla (41) Jart 4
t—oe
0 0>x, for 0<x. As seen in the figure, the exact result exhibits a

strong sensitivity on the initial condition, and the maximum
of P(x,t) is located orx=0. This is different from an ordi-
nary diffusion process, in which the maximum B{x,t) is

. ¢ on (x(t)). The curves in Fig. 4 are similar.to thpse ot_Jserved
lim f p(xyt)dle_La(—>, (420 by Scher and Montrol[21], based on lattice simulation of

B Yerylla the CTRW and also by Weissmast al. [50] who investi-
gated the biased CTRW using an analytical approach. The
valid for x>0. Equation(42) was also derived in Ref49],  FFPE solution presented here is much simpler than the

based on the biased CTRW in the liniit>; thus, the so- CTRW solution, still it captures all the important features of
lution of the fractional Fokker-Planck equation in a linearthe more complex CTRW result.

external field, converges to the solution of the biased CTRW
in the limit of larget.

At the origin one can use the Tauberian theorem to show
that

andA=(F/T) 7. Integrating Eq(41), we find the distribu-
tion function

t—oo

C. Example 2: fractional first passage time problem
for the fractional biased Wiener process

The first passage time is the time a particle first leaves a
_ given domain. We shall consider the first passage time of a
PO~ mt ‘ (43 one-dimensional particle in the presence of an external linear
field F(x)=F>0. The investigation of the first passage time
valid for long times. For the case=0 we foundP(0,) problem in a nonlinear force field will soon follow. At time
~17%2 50, as expected, the decay on the origin is faster fot=0 the particle is located ox=0, and the absorbing
the biased case, since particles are drifting away from théoundary is onx=a>0, which mathematically means
origin. P(a,t)=0. Solutions of the FFPE with special boundary
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0.3
0.25 0.15
t=2 t=10
0.2
= 0.1
X 0.15
o
0.1 0.05
0.05 .
FIG. 4. The dynamics oP(x,t) for the frac-
0 o i iffusi i i
9% o s 10 % o s 10 15 t!onal diffusion process in an external Ilne_ar force
x x field F. We show the solution for four different
times. The dotted curve is the asymptotic solution
0.04 0.02 valid for larget. The maximum ofP(x,t) is for
R all times on the initial conditiorx=0. We use
0.03 1=250 0.015 F=T=Ky,=1 andae=1/2.
Z0.02 0.01
o
0.01 ‘ 0.005
0 0
0 20 40 60 0 50 100 150
X X

conditions can be found using the standard methods of solldsing Eq.(49), we find

tion of the ordinary Fokker-Planck equation, and we use the

method of images to find, in Laplace space, . F(1-y1+4u“r)a
n(u)= ex 5T

. (52

P(x,u)=&(x,u)—e"¥T¢(x—2a,u), —»<x<a,
(46)  Since 7(u=0)=1, 7(t;) is a normalized PDF. FOF=0
our result reduces to what was found previously by Bal-

where akrishnan(6]:
A Fue 1o F(x—1+4u*7%x|) A ue2
g(x,u)=_|_\/mex >T n(u)= exp( - \/K_aa>; (53

(47)
_ _ ) . thus forF=0, %(t;) is a one sided Ly stable density with
is the solution of the FFPE with the free boundary condition;gex /2. and therefore. for largg

[Eqg. (39)]. Since we showed in Sec. llIB how to obtain
&(x,t), one can also findP(x,t).

The survival probabilityS(t) (i.e., the probability that the n(ts)~
particle did not reacla until time t) in Laplaceu space is 2r(1-al2)\K,

aa tf—(l+a/2) ) (54)

a Fora=1 andF=0, we find the well known solution of the
S(u):j P(x,u)dx. (48)  integer first passage tinig1]. For finite F, we find the large
- time behavior of(t;) using the smallu behavior of Eq.

_ _ _ ) _ (52). A short calculation yields
Inserting Eq.(46) into Eq. (48), and integrating, we find

aTa
— a_«a te)~ t7(1+a), 55
é(U)=é{l— exr{F(l 12?4u e ] (49) T T a)FK, " 59

valid for «<<1. This behavior is very different from the stan-
Let t; be the random time it takes the particle to readlor ~ dard case wheR>0 anda =1, which exhibits an exponen-
the first time. The probability density function of the first tial decay. The decay found in E¢5) for F>0 is faster
passage timg; is than the decay found in E@54) for F=0; this is expected,
since the external field transports the particle toward the ab-
(t)= - dS(ty) 50 sorbing boundary. In Fig. 5 we show the survival probability
K dt; ’ S(t) for a=1/2. To findS(t) we first find ¢(x,t), the solu-
tion of the FFPE with a free boundary conditipq. (44)];
or, in Laplacet;—u space, we then findP(x,t) defined in Eq(46), and integrate ovex
R R according to Eq(48). For short timesS(t) =1, since then the
n(u)=—uSu)+1. (51 probability packet does not reach the absorbing boundary at
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a. After a transient time the survival probability follows . Ki (% e
S(t)~t~¢, as predicted in Eqg50) and (55). The transient 74(U) = —U“K—f e WKiKalg (t)dt+1, (59
time will be investigated further in Sec. V in the context of a0

dispersive time of flight experiments. t
Sl(t)=—J n(t)dt' +1, (60
0
D. Example 3: fractional first passage time problem
in a nonlinear field and the convolution theorem of Laplace transform, we find

Let us consider the more general case of a one- - - 1
dimensional particle in a force field(x) with initial condi- 7a(U)= 711( UHK_)- (61)
tion 8(x—Xp) and absorbing boundary conditiét{(a,t) =0, “
wherea>x,. We show that the inverse g transform can It is easy to verify that Eq¢52) and(53) are special cases of
be used to find the relation between the fractional survivaFd- (61).

probability S,(t) and the corresponding,(t). Using Eq. Since 7,(u=0)= ;}1(U=Q), normalization of the possi-
(29) and S,(t)=/2 . P(x,t)dx, changing the order of inte- bly defecte_d(l.e., un-normallze):iPDF_na(tf) is |dent|_cal to
grations we find the normalization of the corresponding(t;). »4(t¢) is not

normalized if there exist a finite probability of not reaching
1 Ua o q e the boundary in the time interval (0). For example, when
Sa(t)z—(—a) tj —ri ol Sie | Sut)dt, the force field is negative and linedf(x)=—F<0 with
a\Ky ot/ ETHE LK Xo<a, since then the net transport occurs in a direction away
(56)  from the boundary and not all particles reach paintor
such a defected case it might be more convenient to consider
and, in Laplace space, the survival probabilityS(t), not 7(t;).

E. Example 4: first passage time in three dimensions

Kl a—1¢ Kl a . . . .
K JUS TS U (57) Our results in Sec. IlID can be generalized to higher di-
@ @ mensions. Assume that é=3 fractional random walk is

) o ) described by a force free fractional Fokker-Planck equation,
From this relation it can be shown that,Sf(t) is a sum of  \ith the initial condition

purely decaying exponentialS,(t) is a sum of purely de-

caying Mittag-Leffler functions with indexx [i.e., this is o(r—Ry)
similar to behavior in Eqs(26)—(28)]. The PDF of escape Prt=0=——>". (62)
times #(t;) is, in Laplaceu space,

S.(u)=

Let the random walk terminate once the particle reaches a
sphere with radiua<R,, whose center is at the origin. The
solution of the first passage time, froRy to a, is found
using either the method of images or the inverseyL&ans-
therefore using form. We find

Na(U)=—UuS,(u)+1; (58
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FIG. 6. The dynamics oP(x,t) for the frac-
0— ) > o— 5 2 tional Ornstein-Uhlenbeck process with=1/2
andK,,=1. We show the solution for four dif-
ferent times. The dotted curve is the stationary

>
>

1.4 1.4 solution, i.e., the Boltzmann distribution which
12 1.2 for the harmonic potential is Gaussian. Note the
4 F J cusp on the initial conditiox=x,=1/2.
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has a strong influence on the solution. The solution ap-
; (63)  proaches the stationary Gaussian shape slowly, in a power

law way, and the solution deviates from Gaussian for any
) _ ) ) finite time. Unlike the ordinary Gaussian OU process, the
hence Ro/a)7(ty) is a one sided Ley stable density with  maximum of P(x,t) is not on the averagé(t)); rather the
index /2. Note that Eq(63) is similar to the corresponding  maximum for short times is located at the initial condition.

. a ua/Z
n(u)= Re & —(Ro—a)K—l,z

a

one-dimensional solutiofEg. (53)]. Solution(63) is not nor- Like the ordinary OU process, the fractional OU process
malized: has a special role. The ordinary OU process describes two
types of behaviors: the first is an overdamped motion of a

fxn(tf)dtf=i<1. (64) particle in a harmonic potential, the second is the velocity of

Ro a Brownian particle modeled by the Langevin equation; the

latter is the basis for the Kramers equation. In a similar way
This type of behavior might be expected based on Polya’she fractional OU process describes an overdamped and
problem. It is well known that for three-dimensional ordinary anomalous motion in the harmonic potential considered in
random walks on a lattice the probability of return to thethis section and in Ref12]; it can also be used to model the
origin is not 1. Here we find a finite survival probability velocity of a particle exhibiting a vy walk type of motion

S(t=«)=1-—al/R,, which is « independent. [18]. The fractional OU process is the basis of the fractional
Kramers equation introduced recently by Barkai and Silbey
F. Example 5, fractional Ornstein-Uhlenbeck process [18]. This equation describes super-diffusion, while in this

. ) ) work we consider subdiffusion.
We consider the fractional Ornstein—Uhlenbe@®RU)

process, namely, the motion of a test particle in a harmonic
potential investigated previously in R¢i.8]. This case can- IV. CONTINUOUS TIME RANDOM WALK
not be analyzed using the CTRW in a direct way since the e now discuss the meaning of the inverseny érans-
CTRW formalism considers only uniformly biased random¢grm based on the CTRW. The decoupled CTRW, in dimen-
walks. We considerr=1/2 andF(x)/T=—x, and use the sjond, describes a process for which a particle is trapped at
well known solution of the ordinary OU procefg25,26: the origin for timet,, then jumps ta,, is trapped orr, for
2 timet,, and then jumps to a new location; the process is then
PL(x.5)= 1 ex;{ ~ (x—x0e ™) (65  renewed. Lei(t) be the PDF of the independent identically
1(X,9)— . . . . .
V2m(l—e %) 2(1—e %) distributed (I1ID) pausing times between successive steps,
andf(r) the PDF of the IID displacements. In what follows
The solution of the fractional OU process is then found usingve assumd(r) has a finite variance and a zero mean. The
a numerical integration of Eq14) using Eqs(A7) and(65). asymptotic behavior of the CTRW is well investigated
Our results are presented in Fig. 6. We have considered d40,16,49,52—-5p
initial condition x,=1/2, and we observe a strong depen- Let P(r,t) be the PDF of finding the CTRW particle at
dence of the solution on the initial condition. A cusp atat timet. Let Nor(s,t) be the probability thas steps are
X=X, is observed for all times; thus the initial condition made in the time interval (0, and the subscript CT denotes
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the CTRW. Because the model is decoupled,
limP(r, t)<NCT(0t)5(r)+§‘,

1
r—o0 \/47TSd,

while, according to Eq(35), P(r,t)~1/ whenr—0. It is
easy to see that therlbehavior found within the solution of
the fractional diffusion equation is due to tee>0 behavior

of n(s,t). This shortcoming found within the framework of

€the fractional kinetic equation is due to the fact that we give
statistical weight to CTRW'’s witls<1 steps(i.e., replace
summation with integration

(7D

P(r,t)=§o Ner(s,tW(r,s), (66)

and W(r,s) is the probability density that the particle has
reachedr after s steps.W(r,s) will generally depend on
f(r); however, it is usually assumed that in the large tim
limit only contributions from larges are important. From the
standard central limit theorem, we know

2
W(r,s)— ...G(r,5)=—— % — r_) (67) CTRW, an exact solution
The derivation of Eq(70) was not mathematically rigor-
us, and our aim now is to check whether it works well for a
$peC|f|c example. We find an exact solution of the CTRW,

rTZ%xpressed in terms of an infinite sum of known functions,

where we use convenient units. Because the steps are in
pendent, the convolution theorem of the Laplace transfor

yields and compare between the exact result and the asymptotic
1- H(u) expressiorfEq. (70)].
- —(u - i i i
Rer(s.u) = P explsIn[ (W)}, 68) The solution of the CTRW irk,u space i§10]
. 1-(u 1
- . P(k,u)= W) = . (72
and Nc+(s,u) is the Laplace transform dfio1(s,t). If, for u 1—g(u)f(k)
u—0, J(u)~1—u®-- [ie., y(t)~t~ AT then, in the
small u limit corresponding to largg Usually the CTRW solution is found based on a numerical
inverse Fourier-Laplace transform of E@2), or using the
Ner(s,u)~u®" L exp(—su). (69) Monte Carlo approach. Here we find an exact solution of the

CTRW process for a special choice tfr) and ¢(t). We
The CTRWN (s, u) is identical ton(s,u) found within the ~ 8SSUME the PDF of jump timeg(t) to be a one sided vy

context of the FFPE. Replacing the summation in @&§)  Stable density, with(u) = exp(-u®). Displacements are as-
with an integration, using Eq$67) and(69) and the inverse sumed to be Gaussian, and then
Laplace transform, one finds

e e
W(r,S)—MW—S)d/ZeX —4—5 (73)

is exact, not only asymptotic. For this choice of PDF’s the
According to Eq.(70), derived previously in Refl15], the  solution of the CTRW can be found explicitly. We use
large time behavior of the CTRW is described by the inverse
Lévy transform of the GaussiaG(r,s). Thus, whenF(x) . 1— exp(—u®)
=0, the FFPE describes the long time behavior of the Ner(s,u)= —————exp(—su), (74
CTRW, and whenF(x)#0 it describes a CTRW type of
behavior in a force field.

Remark 1.If f(r) is broad(i.e., the variance of jump
length divergesthe fractional Riemann-Liouville approach
is not valid; instead an approach based on fractional space
derivatives is appropriatel7].

Remark 2From Eq.(70) we learn that the inverse kg
transform has a meaning of a generalized law of large num- Ner(sit)= La(sm) —Le
bers. Wheny=1, the mean pausing time is finite; therefore,
the law of large numbers is valid, and we expect that the
number of steps follows~t. Indeed, for this normal case,
n(s,t)=6(s—t). Whena<1 the law of large numbers is not .
valid; instead the random number of stepis described by La(t):f | (t)dt (76)
the PDFn(s,t). 0

Remark 3.Forr=0 andd>1, Eq.(70) is not valid. To
see this, consider, for simplicityW(r,s)=G(r,s) and d is the one sided Ly stable distribution. Inserting Eqé73)
=3. Then, usindN¢(s,t)<1 and Eq.(66), and(75) into Eq. (66), we find

P(r,t)~f:n(s,t)G(r,s)ds. (70

and the convolution theorem of Laplace transform to find

NCT(Ovt) =1- La(t)v

(79

(s+1)1’a)’

and
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The first term on the right hand side describes random walk
for which the particle did not leave the origin within the

observation timeg; the other terms describe random walks
where the number of steps $sin Fig. 7 we show the solu-

1 2

(477'S)d/2

t
(s+1)te

r
4s

a

). (77)

FIG. 7. We show 3P(r,t) vs é=r?/t* for the
CTRW process and fott=1/2d=3. The curves
in the figure t=2 (dot dashed ling t= 20 (dotted
line), t=200 (dashed ling andt=2000 (starg
converge in the limitt—o to the asymptotic
curve (solid). The asymptotic curve was com-
puted using Eq(70). It is difficult to distinguish
between the results far=200 and 2000 and the
asymptotic result. Not shown is the delta function
contribution atr =0.

20

©

t
1la

|

t
(S+ 1)1/&] } S

1

M(Zml, e aznd):Cm,dsg s

m
1

(80)

23

with
S

22m d

Chna=—11 T 81
m,d 7Td/2i];|;|_ ( )

1
mi+§

tion of the CTRW process in a scaling form. We consider a

three-dimensional case,=1/2, and use

1

Ll,z(t)=\/;1“[1/2,1(4t)].

(78)

HereT'(-,-) denotes the incomplete gamma function. The
figure showsr3P(r,t) versus the scaling variable=r?/t®.
For large timeg the CTRW solution converges to the solu-
tion of the fractional diffusion equation already presented i
Fig. 3.

Let us calculate the Cartesian moments of the CTRW pro
cess,

M(2my, . ..,2mg)

= J, dxg- - - J, dxdximl- : 'xsm“P(xl, X,
(79

with non-negative integersn;,m,, ... . Clearly, the odd
moments equal zero, and, from normalizatidm(O, . . . ,0)
=1. In Appendix C we find

and m:Eidmi>0. In the Appendixes we also show that, for

t—o0,
am

M(2mq, .. m

. ,Zmd)~Cm’dF(1+ m) (82)

To derive Eq.(82), we used the small expansion of the
Laplace transform of Eq80), and the Tauberian theorem.
One can easily show that the moments in BB) are iden-
tical to the moments obtained directly from the integral

n‘[ransformation[Eq. (70)]. Hence our interpretation of Eq.

(70) as the asymptotic solution of the CTRW is justified
[however, our derivation of Eq82) is based on a specific
choice of y(t) andf(r)].

V. SCHER-MONTROLL TRANSPORT

In this section we show that the FFPE approach is com-
patible with the SM model for dispersive transport. Scher
and Montroll used a CTRW with an absorbing boundary
condition to model photoconductivity in amorphous semi-
conductor AsSe; and an organic compound TNF-PVK,
finding a=0.5 anda=0.8, respectively. In the semiconduc-
tor experiment, holes are injected near a positive electrode,
and then transported to a negative electrode where they are
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FIG. 8. We show the velocity vs time. For
short (long) times we observet™ =% and
[t~ (T9] decays which characterize current in
time of flight experiments in disordered medium.
The dashed curves are the asymptotic expressions
given in Eq.(86). The solid curve is found using
3 Eq. (93) and the stars are based on exact numeri-
E cal solution of the FFPE. Also indicated is the
3 transition timet,.. We usea=1/2, K;,=F=T
] =1, anda=10.

10”

absorbed. The experiments showed that the current is not (iv) Additional assumptions are discussed in the literature
compatible with Gaussian transport. The transient current if21,58-60Q.
these time of flight experiments follows two types of behav- We describe the transport process based on the FFPE,
iors,

JP(x,t) 2

PO _ e | 2E L 2

t<t, ot X T  ox
t>t,_, (83

P(x,t), (84

(1)
|(t)~[t—(1+a)

with initial condition P(x,t=0)= &§(x) and the absorbing
boundary conditiorP(a,t) =0. Due to the boundary, condi-
wheret . is a transient time. For Gaussian transport processegon P(x,t) is not normalized. Therefore, the meaning of
charge carriers move at a constant velocity, and after a tranx(t)) is not straightforward. We imagine that a charge car-
sient time, depending on the thickness of the sample angler, once reaching the boundaryaais trapped there and not
external field, the charge carrier is absorbed. Hence, for nofremoved. Therefore,

mal processes found in most ordered material, the current has

a step shape. Since experimental data of normalized current a

I(t)/1(t,) versus timet/t., for different sample thickness <X(t)>=leXP(X,t)dX-i‘[l—S(t)]a, (89
and external fields, collapse onto one scaling curve described

by Eq. (83), the phenomena was designated universal. ThGhere S(t) is the survival probability. From Eq85), (x(t
widespread occurrence of these features in a variety of dis= 0y =0 and(x(t=))=a. The first term on the right hand
ordered materials confirms the universality of the approachjge of Eq.(85) describes processes in the bulk, while the

[22-24,56,57 ) ) second describes the reduction of the number of particles
SM showed how to calculatg(t) using an effective me-  participating in the process.

dium approach, and averaging over many exponential pro- sipce in Sec. IV we showed how to calcul&éx,t) and
cesses. The exponeatmay depend on temperature and ong(t), ysing the inverse Ly transform, the calculation of
other control parameters. Here we consideas a fit param- (x(t)) and hence ofuv(t)) becomes straightforward. The
eter. The basic assumptions SM used are as follows: _integrals involved are easily calculated using standard nu-
(i) The current of charge carriers is modeled by one diqnerical packages, and we USBATHEMATICA. Our results
mensional process. Sing&(t))#0 only in the direction of {4 the averaged velocity angl=1/2 are presented in Fig. 8.
the applied external linear field, this assumption works well. ' The time behavior ofx(t)) is investigated in Appendix

(i) The absorbing boundary condition mt=a and the : 2 2
effect of the other boundary conditions are neglected. SinceD’ based on _the small behavior ofP(x,u) andS(u). When
o ) ; a>T/F, we find
the transport is in the direction of the absorbing boundary,

this assumption is reasonable. EK (et
(i) The measured current is given hbyt)o(v(t)). — 2 (1~ r
(v(t)) is the time derivative of the mean displacement (v(t))~ TF(1+§“) (86)
(x(t)), which is calculated based on the decoupled CTRW aa’T - (1+a)
on a lattice. 2FK, I'(1-a) t>t,,
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which is similar to Eq.(83). These behaviors can be easily 1 FKy =22 T252
understood. For short times the absorbing boundary has no  (v(t))=— lT 1- exp( ———| 93
effect, and(v(t)) is the time derivative of Eq:37). For long m AF“K1t

times the second term on the right hand side of B§) is

important, using Eqs50) and (55): as shown in Fig. 8, this equation interpolates between the

short and long time behaviors ¢f (t)).
(v (1))~ _a'S(t):an(t)Nt—l—a. (87) Using Eqs.(88_) z_ind (92), we prove the sc_aling behavior_
of the current, similar to what is observed in many experi-
As shown in Appendix D, the bulk term in E¢85) [i.e., ments. We find
2. xP(x,t)dx] also contributes to the current, this contri-

bution being negative. () = {v(®) =F(£) (94)
A convenient definition oft, is the time at which the Ity (v(ty) t)

extrapolated asymptotic dashed lines in Fig. 8 intersect. Us- i o
ing Eq. (86), and the scaling function is

B 1‘*(1+a) 12« aT 1o - S( )_C a—lfw |a(z) d (95)

~|2Ti—a)| |FK, (88) RO N
Sincet, is measurable;, T, anda are known system param- ith
eters, andx can be determined from the current slopes, one
can determine the value &, from experiment. If we as- = | (2) -1
sumeK , is independent of the force field, we find Co= f " dz| , (96)

C1
a 1a
t.~ El (890 andc,;=[T'(1+a)/(2I'(1—a))]Y*. We see that the inverse

Levy transform approach predicts the scaling funct&{x)
in agreement with the SM prediction. for the time of flight experiments. Within the CTRW we

Let us now further demonstrate the effectiveness of th&XPect the scaling function to depend on details/¢f) in

inverse Ley transform. The mean velocity in an ideal the Vicinity of the transition timé.
Gaussian transport systefie., a=1) is given by a step The FFPE is compatible with linear response theory, and
function behavior the generalized Einstein relations h¢i8,3( (i.e., assuming

a andK, are independent of the external figltHence the
FK, FFPE describes a physical system in a weak external field.
vi)=—F, 1) xperiments are not limited to weak external fields, and then
(va(1)) T t<(aT/FKy) 90 E i limited k | field dth
one might be able to fit data using a field dependept
and (v,(t))=0 otherwise. This behavior is a simplification Barkai and Fleuroy30] calculatedy(t) for a specific type of
experiments in normdi.e., orderelisystems. The mean dis- Gaussian behavior for long enough times and strong enough

placement in such an ideal process is fields. Thus we expect the FFPE to give the correct behavior
only in the linear response regime, or, when the field be-
FKit| t<(aT/FKy) comes strong, only within a certain time span.
)=y T (92)
a |t>(aT/FKy). VI. SUMMARY

The fractional Fokker-Planck equati¢iRFPB is a simple

lir;gt\;ier:g?;:)(/t;mbthz fr(’?citilon?hlepirr?\zrssse S fotgggsu%rt;’n\'FESteps'single exponent stochastic framework describing subdiffu-
) by applying ey 9 sjve transport in a nonlinear external field and close to ther-

(29)], to the mean displacement of ideal Gaussian Proceszal equilibrium. The inverse vy transform gives the solu-

[I|Eq. (91)]. Secf(.)nd, take thhe time :Jlerlve;juvdelof the mean dIS'tion of the FFPE in terms of the corresponding solution of an
placement to findu(t)). The result we find is ordinary Fokker-Planck equation. The integral transforma-
. tion also describes the long time behavior of the CTRW in
(o ()= aFKata—1J dzﬁ. (92) dimensionsd=1, 2, and 3. Thus the transformation maps
T t* z¢ Gaussian diffusion onto fractional diffusion, and it can serve
as a tool for finding the solution of certain fractional kinetic
t*=[FK,/(Ta)]Yt is a dimensionless time in the problem. equations.
For short times* we may take the lower limit of the integral The solution of the CTRW for a special choice fffr)
to zero; usingfydzl,(z)/z*=1T'(1+«), we find the short and(t) was also found. This solution is a useful tool for a
time behavior in Eq(86). The long time behavior in Eq486) detailed comparison between the CTRW and the FFPE. The
is also easily found by noting thdt,(z)~az” **9/T(1 exact solution can also be used to check the accuracy of
—a) for z—o., For a=1/2, we find numerical solutions of the CTRW.
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All through this work we have emphasized the relationwhere
between the FFPE and stable laws. The basis of the FFPE is
the generalized central limit applied to the number of steps in
the corresponding random walk. In addition, for a particle in o« B wl(1-a) 2—«a
a binding external potential the stationary solution is the 7~ (1= ¢ k=(1-a)a A Y P
Boltzmann equilibrium. These features, and the relation of
the FFPE with the CTRW, are the foundations of the FFPE.
Recently, a fractional Kramers equation was introdude). B={[2m(1—a)] LoV 0112 (A5)
This equation has similar features to the FFPE; however, it
describes superdiffusion.
_Transport in ordered media is often modeled using therpe |argez series expansion is
diffusion equation, this approach being the simplest and most
widely used. Dispersive Scher-Montroll transit time type ex-
periments, observed in a large number of disordered systems, 1 & T(1+na)
can be described phenomenologically using the FFPE. This | (z)= — E
is only one example of physical phenomena in which a dif- T n=1 n!
ferent kind of calculus, i.e., noninteger calculus, plays a cen- (AB)
tral role.
Note addedAfter this work was completed a review ar- ) _
ticle on the FFPE61], and work on the fractional first pas- 2nd, using the V\italIIJ((rl]?vgn formula, the=1 term yields
sage time probleni62,63, were published. This work fo- l«(2)~al'(1=a) "z7"7<. .
cused on subdiffusion. In Ref64], an extension of the Representation of the one sided stable PDF’s in terms of

solution method discussed in this paper for the fractionaPther special functions is usually obtained by examining ex-
wave equatior(superdiffusiof was considered. pansion(A6) and using properties of functions. It was
shown[21] that, for any rational value o, |,(z) can be

expressed in terms of a finite sum of hypergeometric func-
tions [e.g., 134(2z) given in Ref.[21])]. We list other one

| thank G. Jumarie, A. |. Saichev and G. M. Zaslavsky forsided stable densities in terms of more familiar functions.
correspondence and R. Gunesch, J. Klafter, R. Metzler, R. (i) The one sided PDF withw=1/2, also known as
Silbey and G. Zumofen for discussions. This research waSmirnov’s density,
supported by a grant from the NSF.
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APPENDIX A 1
] |1/2(Z)= \/_Z 3/2e 1/(42).
Levy stable PDF’s are usually defined by means of their 2w
Fourier transform. One sided stable PDF’s witz) =0 for

z<0 and O<a<1 are defined by

(A7)

This result can be easily verified using the Laplace trans-

form.
o . (i) The one sided stable PDF with=2/3 is given in
f el (z)dz= exp(— |k|*e 'WIK)(™2)a) (A1) terms of Whittaker'sW function
It is convenient to express one sided stable PDF'’s in terms of 3
the Laplace transform Lys(2)= \[; 2 e YWy, 1l y), (A8)
f e Y4, (z)dz=e""", u>0. (A2)
0

wherey=4/(27z%). Note that for this casg65] points rel-

Thusl (z) can be found using thée.g., numericalinverse ~ €Vant errors in the literature. o ,
Fourier or inverse Laplace transform. Schneif&$] repre- (iif) For =1/3, in terms of the modified Bessel function
sented Ley stable densities in terms of Fox thefunction ~ Of the second kind

[46,47:

(=11
(—la,lla)

(A3) | (Z)=i2‘3’2K ( 2 ) (A9)
. 1/3! 37 1/3! \/ﬁ

1
- 10 -1
[ .,(2) 72 ng[z
The asymptotic smalt behavior yieldd65]
We use the expansion in EGA6) and theMATHEMATICA

Ia(z)~Bz*"e*"Z_T, (A4) command Simplify- - - ], to find for a=1/4
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|ya(2)=(6\2\zI' (5/4)HPFQ{ },{1/2,3/4,~ 1/(2567)]
— 3w HPFQ{ }.{3/4,5/4,— 1/(256z)]
+2I (714 HPFQ{ },{5/4.3/2,

—1/(2562)])/(127z""%), (A10)
where HPFQ- - - ]=HypergeometricPFQ - - ] is the hyper-
geometric function and we are USIMATHEMATICA nota-
tion. Other representations of stable densitigs), for ra-
tional exponentsy, can be found in similar way. However,
we usedMATHEMATICA Version 4 to find the properties of
Eq.(Al10) for 0<z<1, and found negative values flar,(z),

which were wrong. This probably implies some type of nu-

merical problem withinMATHEMATICA, at least fora=1/4.

APPENDIX B

In this appendix we find the smafk<1 series expansion
of P(r,t) based on the Fo¥ function solution. The Fox
function is represented as

gmn (alval)"'(apiap)
P (bleBl)"'(btuq) '

IR

(B1)

and, for our choice of parameters,

m=2, n=0, p=1, =2,

al=1, a1=1,

b1=d/2, ﬂ]_: 1/&, b2: 1, ,3221/0{. (BZ)
The asymptotic expansion of thé Fox function, for 0<x
<1, is defined when two conditions are satisfieib,47).

The first is

q p
5=§1 @—2‘,1 a;>0, (B3)

and for the cas&=0, see Refs[46,47]. For our case, de-
fined by the parameters in EB2), 6=2/a—1>0 when 0
<a<1. The second condition is

Bn(b;+A)# B;(bp+k) (B4)
for
j#h, j=h=1,...m, Ak=012.... (B5
Using Eq.(B2) condition(B5) reads
1 1
—(1+A)#=—(d/2+k); (B6)
o o

therefore, the condition is satisfied for dimensiohxs1 and
3, but not ford=2:
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(ag,aq)-- '(aprap)

(bl!Bl)' : '(btuq)

m,n

pa| X

m o
:hzl IZO Iy 0D (b= Byén ) I T (1—a

+ajéni)(— 1)k(X)§h’k[H,q=m+1r(1_ bj+ Bjénk)

XTP_ . i T(aj— ajén k! Bnl 1, (B7)
where
&n k= (bnt+K)/Bh. (B8)
Using Eq.(B7), we find
H2d (1,9
12 7|(d12,2l) ,(1,1/ex)
o T(1—di2—k)(—1)kx@2+k
—al >
=0 I'(1—ad/2—ak)k!
5 T(di2—1—k)(—1)kxe+h
LD Ve —— - (B9
Using some simple manipulations, fde=1 we find
1 * (_ 1)n§n/2
P(rH= 2ta/2 nzo NI'1-a(n+1)/2] (B19)

and, ford=3, Eq.(35).

Ford=2 the asymptotic expansion of the Fox function is
not known. Using Eq(31) one can show that fai=2, and
&<1

P(r,t) In[t*?/r]. (B11)

- 7I'(1— a)t®
Equation(B11) was derived independently by Saicheé6].

APPENDIX C

We investigate the Cartesian moments of the CTRW.
These moments are

M(2my, ...,2mg) = f_ dxg- - J_ dxgx; xR - XM
- t
X L,|—
e
t 1
-L,
(s+ )Y} (4ms)¥?
X2+ -+ X5
Xex —T (C1
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Changing the order of integration and summation, we use the F
identity B.=57(1=0). (D7)

0 o0 1
J_m 1 o Xd(47TS)d/2

Then it is easy to show that

(aB_—1)eP-2+1 E

2 2
X1+ ot +Xd ~ _
Xex;{ — 4—5 Ximl. . .Xsmd:Cm,dSm <X1(U)>— E BZ_ — 52; (D8)
(C2
Foru“r“—0, we find
whereC,, 4 is defined in Eq(81). Inserting Eq.(C2) in Eq.
(C1 we find Eq.(80). a’F 2 T
The Laplace transform of E¢80) is (X1 (u))~ F) ue 1z, (D9)
1_e—u” S —su®am
M(2my, ...,2mg) =Cp g4 ;::1 e s We use the conditioma>T/F, and then
(C3) 2
F a—1_a
We use <X1(U)>~—U 7% (D10)
o0 d o0
> e stigh=(— d_ 2 We therefore find, for long times,
- s= X=u«
- a’T  t @
d\m e* X4(1) (D11)
=(—1)"‘(&) o (C4 ()28, Ti—a)
X=u«
and, for smallu®, we find Using the same approach,
M(2my, ...,2mg)~Cp g (m+21)u~t "M  (C5) R 1+aB
! ‘ md (Xy(u)y=—Eef¥Te Bra——; iny (D12
Applying Tauberian theorenri.e., inverting Eq.(C5)] we B
find Eq. (82).
For (ur)*—0, we find
APPENDIX D
z _ a—1_a
In Laplace space the mean displacement is written as a (Xo(U))=—u"" 7", (D13)
sum of three terms,
R . . ) and, therefore, fot— oo,
(x(u)) =(X1(u))+(X(u)) +(xs(u)), (D1)
with = ar " D14
<X2(t)>__F_Kam' (D14)
~ a ~
(xa(u))= J,wxf(x'“)dx' B2 \WhenasT/E, (x,(t))> (xy(t)) for t—. Using Eq.(50), it
is easy to see that
~ a ~
Xo(U) EeFa’TJ x&(x—2a,u)dx, (D3) .
belu) : (Xa())=n(t)a (D15)
and and n(t) is the first passage time PDF. Using E@S5),
(D11), and(D14), we find
(Xg(u))y= [——S(U) a. (D4)
aa’T (1t
We define <U(t)>~—2FKaI’(1—a)t : (D16)
Fua_l’Ta .
E=—5— (D5)  valid for t—o and whera>T/F. We note that botlix,(t))
and (x5(t)) contribute to (v(t)), the contribution from
G=\1+4u"r°, (DB)  (x4(t)) being negative.
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